

WSP #: 131-18048-00

THE PORTSMOUTH PUMPING STATION FLOW DIRECTION ENVIRONMENTAL ASSESSMENT

KINGSTON, ON

PORTSMOUTH PUMPING STATION FLOW DIRECTION HYDRAULIC MODELLING MEMORANDUM

MAY, 2014

TECHNICAL MEMORANDUM

То:	Mike Fischer, M.Sc,. P.Eng, Utilities Kingston	
Date:	May, 28 2014	
From:	Michael Flowers, EIT	
	Matt Morkem, P.Eng	
Project:	Portsmouth Pumping Station Flow Direction Environmental Assessment	
	Project No: 131-18048-00	
Subject:	Portsmouth Pumping Station Flow Direction Hydraulic Modelling	
-	Memorandum	

Table of Contents

Table o	f Contents	1	
LIST OI	IST OF FIGURES/DRAWINGS2		
LIST OI	F TABLES	2	
APPEN	DICES	3	
Executiv	ve Summary	4	
1.0	Introduction	5	
2.0	Overview	5	
3.0	Review of InfoSWMM Model and Available Data	6	
3.1 3.2	 2008 InfoSWMM Model Review	10 12 14 14 14	
4.0	2013 Model Calibration	15	
4.1 4.2 4.3 4.4	Calibration Process Calibration Targets Dry-Weather Calibration Wet-Weather Calibration	15 16	
5.0	Projection Scenarios	18	
5.1	Methodology and Assumptions	18	

5.2 5.3	2026 Growth Scenario Build-out Growth Scenario	
6.0	Portsmouth Pumping Station Flow Direction Analysis	
6.1	Analysis Set-Up 6.1.1 Base Case Scenario	20 21
6.2	Design Storm Evaluation 6.2.1 Results	21
6.3	6.2.2 Discussion Combined Sewer Overflows	22
	6.3.1 Results 6.3.2 Discussion	32
7.0	Upgrades and Costs	
7.1 7.2	Portsmouth PS Flow Directed East Towards Ravensview WWTP Portsmouth PS Flow Directed West Towards Cataraqui Bay WWTP	
8.0	Conclusion	40
9.0	References	41

LIST OF FIGURES/DRAWINGS

Figure 2 - 1: Key Map	6
Figure 3 - 1: Gap Analysis for 2013 infoSWMM Model Update and Portsmouth PS Analysis	
Figure 3 - 2: 2013 Rainfall Data Summary for Kingston Rain Gauge Stations	14
Drawing 5 - 1: Growth Projection Summary Map	20
Drawing 6 - 1: Design Strom Analysis: Portsmouth PS Routing East 1	
Drawing 6 - 2: Design Strom Analysis: Portsmouth PS Routing East 2	27
Drawing 6 - 3: Design Strom Analysis: Portsmouth PS Routing West	
Figure 6 - 1: Combined Sewer Overflow Comparison: East 1 vs. East 2 vs. West Scenario's	

LIST OF TABLES

Table 3 - 1: Summary of Upgrades to City of Kingston Trunk Sewer System	6
Table 3 - 2: Summary of Intensification from Development Projections	7
Table 3 - 3: Documented vs Model Simulation Outputs for 2008 InfoSWMM Model	9
Table 3 - 4: Summary of Data Received from Utilities Kingston	11
Table 3 - 5: Combined Sewer Separation Areas	15
Table 4 - 1: Dry and Wet Weather Calibration Criteria	16
Table 4 - 2: 2013 Wet Weather Calibration Comparison to Pre-Calibration	18
Table 6 - 1: Portsmouth Pumping Station Flow Direction Analysis Scenarios	21
Table 6 - 2: River St PS Dry-Weather Strom Analysis East 1 vs East 2	. 22
Table 6 - 3: Portsmouth PS Design Strom Analysis East 1 vs East 2	. 23
Table 6 - 4: Trunk Sewer Design Storm Analysis for 2026 Conditions East 1 vs East 2	24
Table 6 - 5: Trunk Sewer Design Storm Analysis for Build-Out Conditions East 1 vs East 2	25
Table 6 - 6: Cataraqui Bay WWTP Storm Analysis East 1 vs West	28
Table 6 - 7: Trunk Sewer Design Storm Analysis for 2013 Conditions East 1 vs West	29
Table 6 - 8: Portsmouth PS Design Strom Analysis East 1 vs East 2	29
Table 6 - 9: Trunk Sewer Design Storm Analysis for Build-Out Conditions East 1 vs West	30

Table 6 - 10: CSO Summary - Portsmouth Service Area Routed East vs. West	. 33
Table 6 - 11: CSO Summary: East 1 vs East 2	
Table 6 - 12: CSO Summary: East 1 vs West	
Table 7 - 1: Sewer System Upgrades for Reducing Flow Capacity Exceedance: East Routing	. 37
Table 7 - 2: Sewer System Upgrades for Reducing Combined Sewer Overflows: East Routing	
Table 7 - 3: Sewer System Upgrades for Reducing Flow Capacity Exceedance: West Routing	. 39
Table 8 - 1: Summary of Trunk Sewer System Upgrades: East vs West Routing of Portsmouth PS	

APPENDICES

2008 Model Observations and System Upgrades Summary
Rainfall and Design Storm Data
Dry Weather Calibration Observations
Wet Weather Calibration Observations
Growth Projection Calibration
Design Storm Results
Cost Estimates

Executive Summary

WSP (formally GENVIAR) was retained by Utilities Kingston (UK) to conduct the Portsmouth Pumping Station (PS) Flow Direction Environmental Assessment (EA) where a flow redirection analysis was performed in support of the EA using the UK supplied 2008 Kingston Trunk Sewer InfoSWMM Model to evaluate impacts associated. Prior to the evaluation, a review of the supplied model was completed and a gap analysis was conducted to determine the necessary data required for recalibration to the 2013 trunk sewer conditions to best represent the current day system. The model was then recalibrated and updated to simulate new growth projections based on anticipated development intensification and system upgrades using data supplied from UK and the original calibration documents completed by CH2MHILL/XCG Consultants in 2009 for the Kingston Sewer Master Plan. The new system upgrades included a weir height adjustment to represent the West St. Combined Sewer Overflow (CSO) upgrades and twinning the forcemain crossing the Rideau Canal from the River St. PS.

With the updated model completed; three design scenarios were created to represent the system before development intensification (East 1), with intensification (East 2), and with intensification and flow redirection of the Portsmouth PS service area towards the Cataraqui Bay Wastewater Treatment Plant (West). For each scenario the trunk sewers, PS and wastewater treatment plants (WWTP's) infrastructure was evaluated under a design storm and CSO analysis where the shared impacts of combined sewer separation and flow redirection was observed. The results showed that a majority of netreductions in flow were achieved through combined sewer separation alone; however the results showed that if flows are maintained to the east, significant upgrades to truck sewers, PS and CSO tanks would be required along the flow path to equal the same level of service (LOS) target originally anticipated in the base case (East 1). In the west scenario, however, net-reduction trends were observed for flows and CSO's in the Kingston Central trunk sewer system immediately downstream from the Portsmouth PS service area during dry-weather, major storm events and a 2008 wet-year simulation as compared to the East 2 scenario. The West scenario, however, presents the Cataragui Bay WWTP with a substantial increase of dry-weather flow that exceeds the WWTP's current peak capacity for the growth projection scenarios and does not contribute to reductions in observable flow outside the Portsmouth PS service area's influence.

Areas where there is local pipe surcharging, PS firm capacity and WWTP peak capacity exceedences were identified for sewer system upgrades and analyzed to support development intensification. In summary, trunk sewer system upgrades excluding WWTP upgrades for Portsmouth PS routing east was estimated to be \$20,650,000 while routing west was estimated to be \$9,175,000.

Portsmouth Pumping Station Flow Direction Hydraulic Modelling Memorandum

1.0 Introduction

This technical memorandum depicts the review, data collection, and calibration to the City of Kingston trunk sewer InfoSWMM model being used as part of the Portsmouth Pumping Station (PS) Flow Direction Environmental Assessment (EA) to evaluate options and alternatives for assessment. WSP (formally GENVIAR) has been retained by Utilities Kingston (UK) to conduct the EA using the supplied InfoSWMM trunk sewer model which was originally created as part of the Kingston Sewer Master Plan completed by CH2MHILL and XCG Consultants in 2009.

As part of the evaluation process the model was validated and updated to reflect the current sewer infrastructure and pumping station operations. The calibration is a combination of data verification and model revisions using actual flow data provided by UK to represent current 2013 conditions. Growth projections and the impacts of redirecting sanitary flow from the Portsmouth Service area are also analysed in comparison to the Sewer Master Plan to evaluate the impacts on trunk sewer infrastructure and Combined Sewer Overflows (CSO's). The results and findings were then used to evaluate the probable upgrades and costs necessary to address increased sanitary flow from proposed development intensification for Portsmouth PS flow direction options.

2.0 Overview

The provided InfoSWMM model represents a trunk sewer system which divides the City of Kingston into three main collection areas (Kingston West, Kingston Central, Kingston East) that outlet to two separate waste water treatment facilities. The west system, which generally includes the portion of the City within the urban boundary west of Little Cataraqui Creek, collects and conveys flows to Cataraqui Bay WWTP. The central and east systems, which generally include the area east of the Little Cataraqui Creek, discharge to Ranvensview WWTP. The model represents the City's sewer system with a combination of pipe elements (conduits), pipe junctions (nodes), storage nodes (pump stations, CSO tanks and wet wells) and weirs (combined sewer overflow locations). The Portsmouth Pumping Station being considered for assessment is located in the central area and accounts for a service area of approximately 384 ha.

The procedure to evaluate options and alternatives for assessment of the Portsmouth flow redirection from East to West is a multi-stage process which requires the provided InfoSWMM model to be calibrated and validated to represent any new or upgraded infrastructure as well as current growth projections based on the City of Kingston Official Plan, Sewer Master Plan and updates from the City of Kingston planning department. The final model includes three scenario's representing existing 2013 conditions, the 2026 growth projection and a full build-out growth projection while a separate model was created to evaluate the redirection of Portsmouth Pumping Station. Refer to **Figure 2-1** for the Key Map of the Kingston Sewer service.

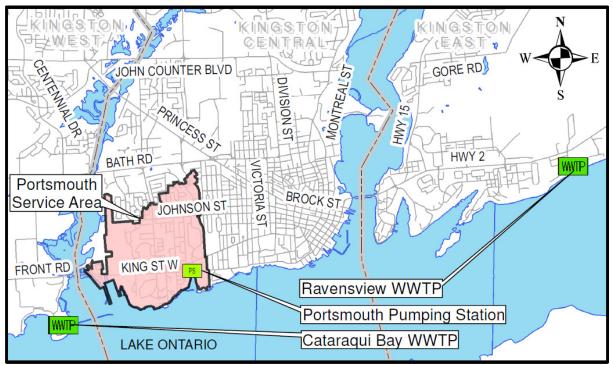


Figure 2 - 1 Key Map

3.0 Review of InfoSWMM Model and Available Data

3.1 2008 InfoSWMM Model Review

Review of the provided InfoSWMM model was conducted in order to determine the extent of calibration required prior to data collection and making model updates. Review was kicked-off by a meeting with UK personale David Fegan and Mike Fischer on August 1st, 2013 to determine the extent of system updates and projections to be considered for the EA. **Table 3-1** represents a summary of the system upgrades to be considered from the discussion. In addition to system upgrades, UK provided the criteria for consideration of future build-out projections based on the City of Kingston Official Plan and Sewer Master Plan. A summary of these projections are presented in **Table 3-2** and include prime development areas located in Kingston central.

Location	System Upgrades/Adjustments
River St. Pumping Station and Cataraqui	Forcemain Twinning as detailed in the
River Crossing	Sewer Master Plan technical
	memorandum ' River Street Pump Station
	Capacity Analysis'
West St. CSO Weir	Increase weir height from 74.7m to 75.5m
Kings Street Pumping Station Upgrades	Pumps replaced with like for like.

Table 3 - 1: Summary	of Upgrades to City of Kingston Trunk Sewer System	
Table C Treathing		

Location	Growth Projection
General Area's	General Development
	- 2.1 person per unit
	- Residential Density: Increase of 9% from the current
	overall density of 21.6 units per hectare within urban
	boundary to an overall minimum density of 23.5
	residential units per net hectare by the Horizon year
	of 2026. The residential intensification target is to be
	achieved through larger scale developments, the
	expansion or conversion of existing buildings, and the
	redevelopment of vacant, underutilized, or
	Brownfield sites and infill developments. In addition,
	in new large scale developments the City seeks a
	density of 37.5 units per hectare.
	- 2% per year average growth
	Avoid double counting – use 2% unless otherwise
	specified, but not both
	- Rate of growth vs. Full build-out.
	- Utilize full build-out to determine preferable flow
	direction at Portsmouth PS.
	- Growth projected to be slightly negative beginning in
	2030.
Willimsville	Short Term Development
	- Total Residential Units: 356
	- Total Residential Population: 688
	- Total Retail Population: 184
	- Total Employment Units: 283
	Long-Term Development
	- Total Residential Units: 1674
	- Total Residential Population: 3230
	- Total Retail Population: 922
	- Total Employment Units: 1418
North Block	Full Development
	- 150 residential units per block with 3 blocks to
	potentially develop
	1 / 1

	- Office space: negligible
	- Retail Commercial 10-15,000sq.ft.
	- Other 5,000 – 10,000 sq. ft. restaurant / café
D : T	
Davis Tannery	Full Development
	- 300 units (multi's and apartments) and 1,100m ² of
	commercial space
IO Psych Hospital	Full Development
	- 42L/sec sanitary peak flow, and 1033m3/day ADF
	added by new residential development on this land
	(Hospital not included). Details from XCG's Report to
	FoTenn Planning & Urban Design dated September
	21, 2012.
	21, 2012.
St. Mary's Hospital	Full Development
	- Hospital is moving to a different location. Assume full
	build out of available land area based on urban lot size
	density.
Alcan Property	Development in accordance with Official Plan
Novellis	Development in accordance with Official Plan

Beginning with review of the model, WSP first tested the existing InfoSWMM projection scenarios for 2008, 2026 and Build-Out conditions as compared to the original calibration report documented in *CH2MHILL/XCG's Technical Memorandum No. 3, 2009.* Early model testing revealed that the supplied model did not produce the same results. A selection of representative model tests for the October wet weather event is presented in **Table 3-3** showing the varying results between model outputs.

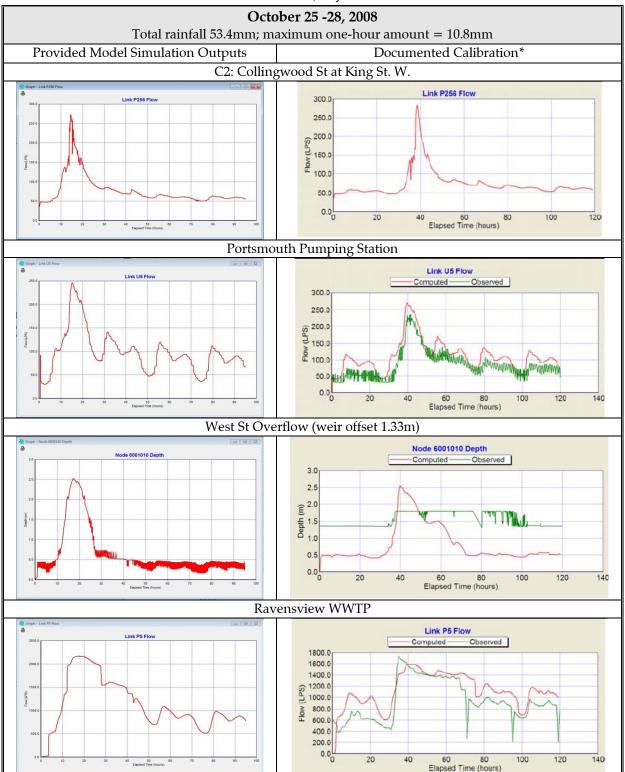


Table 3 - 3: Documented vs Model Simulation Outputs for 2008 InfoSWMM Model

*Source: CH2MHILL/XCG Technical Memorandum No#3, May 2009

In addition to model tests, WSP reviewed the model representations of the pumping stations, forcemains, sub-catchment areas, CSOs and trunk sewers as compared to the *Technical Memorandum No. 3* calibration report to ensure 2008 conditions were being represented appropriately. A summary of the observations are presented on **Drawings 3-1 and 3-2** in **Appendix A** where a few inconsistences are noted.

In summary, it was observed from the results that the diurnal dry-weather flow patterns suspected were still representative of the original documented results; however there were reductions to the total observable flow at peak conditions as compared to the actual flow data. There were also a few model results where flow conveyed through pumping stations, such as the Portsmouth Ave. PS and King St. PS, were consistent with dry-weather events but not with wet-weather events which may indicate that these systems were altered after the original calibration. Furthermore, it was observed that there were a series of infrastructure assumptions that were not optimized or represented in the original model; most specifically in Kingston East where the James St. and Hwy 15 (B64) PS do not have any sanitary inflow represented despite being in developed areas. Since system upgrades and projection scenarios are included in the recalibration process to the 2013 scenario as part of the scope for the environmental assessment the original calibration assumptions for representing the Portsmouth PS service area were found to be adequate without reproduction of the entire model.

3.2 Data Collection and Validation

To supplement recalibration of the original InfoSWMM model as well as updating the model for the current 2013 scenario a gap analysis was conducted to determine what information would be required as outlined in **Figure 3-1**.

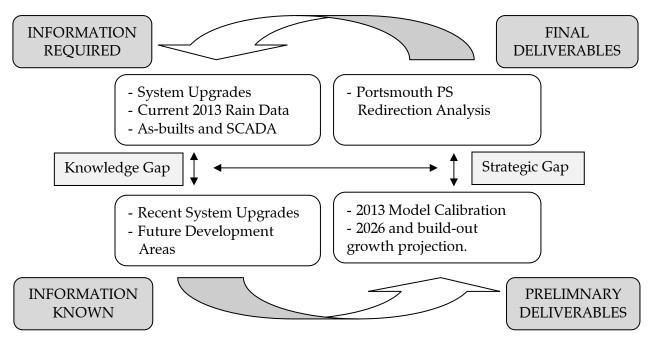


Figure 3 - 1 Gap Analysis for 2013 InfoSWMM Model Update and Portsmouth PS Analysis

The purpose of the gap analysis approach is to identify specific information required to reduce the information required for recalibration (knowledge gaps) and model simulation (strategic gaps) in order to perform the analysis. WSP identified and requested UK for available as-builts, rainfall, flow and water consumption data records in addition to the growth projection and system upgrades information provided at the project kick-off meeting. A summary of the information received is outlined in **Table 3-4**.

Table 3 - 4: Summary of Data Received from Utilities Kingston

Table 3 - 4: Summary of Data Received from Utilities Kingston	_
Requested Data Received	
Flow Monitor ID Info:	
C1 – Process and Parkway	
C3 – Belle Park	
C6	
C7 – Rideau Heights Tr	
W3 – Days road at P5	
W7 – Off Princess near Costco	
W14– Princess Street adjacent to Winchester Lane	
W13 – Off Gardiners Road near Cataraqui Mall Storm Pond	
W10 – Off Tanner Drive behind McGinnis Landing	
E1 – Hwy 15 near Barrett Court	
Mona Drive	
Days Road	
Front Street	
Butternut Creek	
B40	
B64	
Portsmouth	
O'Kill (King Street)	
West (Cataraqui Bay)	
Ravensview	
Current Billed Water Consumption	
Water Consumption Distribution Areas	_
Combined Drainage Area's Update	
Growth projections summary	
Williamsville build-out	
MOE Sewage Overflow Summary Report	
Report to Planning Committee - Projected Development	
River Street Pump Station Capacity Analysis	
Forcemain as-built information for pumping stations	
System SCADA (Supervisory Control and Data Acquisition) for treatment facilities,	
CSO's and pumping stations.	

3.2.1 Rainfall Data

Rainfall data for 2013 was provided by UK for the River Street PS Weather Station between the months of January-June. In addition to the provided information both Queen's University and Environment Canada rainfall data was collected from two additional weather stations to verify the data collected and to determine suitable rain events to be used for wet-weather calibration of the InfoSWMM model. A summary of the information collected is shown in **Figure 3-2**.

Comparing all weather data, three distinct wet-weather events were selected for model calibration for the months of February, May and June. Observing the data, it was noted that overall there was consistent representation of rainfall between all three weather stations; however the River St PS Weather Station reported periodically no rainfall on days where both of the other stations did report rainfall. To represent the gaps in data and to provide the best representation of rainfall for model input the Queen's University data was combined with the River St PS data since both datasets had the highest frequency of reported rainfall. The Mean Areal Precipitation (MAP) was computed to generate the model inputs to represent the most realistic simulation result for dynamic flows. The final modified rain gauge information used is presented in **Appendix B**.

In addition to the 2013 rain data. UK also provided WSP with the 2008 rain data and AES design storm data for 12-hr events. Both sets of data is appended in **Appendix B** and was used for the Portsmouth PS flow redirection analysis as presented in section 6.0 of this memo.

2013 InfoSWMM Model Calibration, Data Validation and Portsmouth Pumping Station Flow Direction Simulation

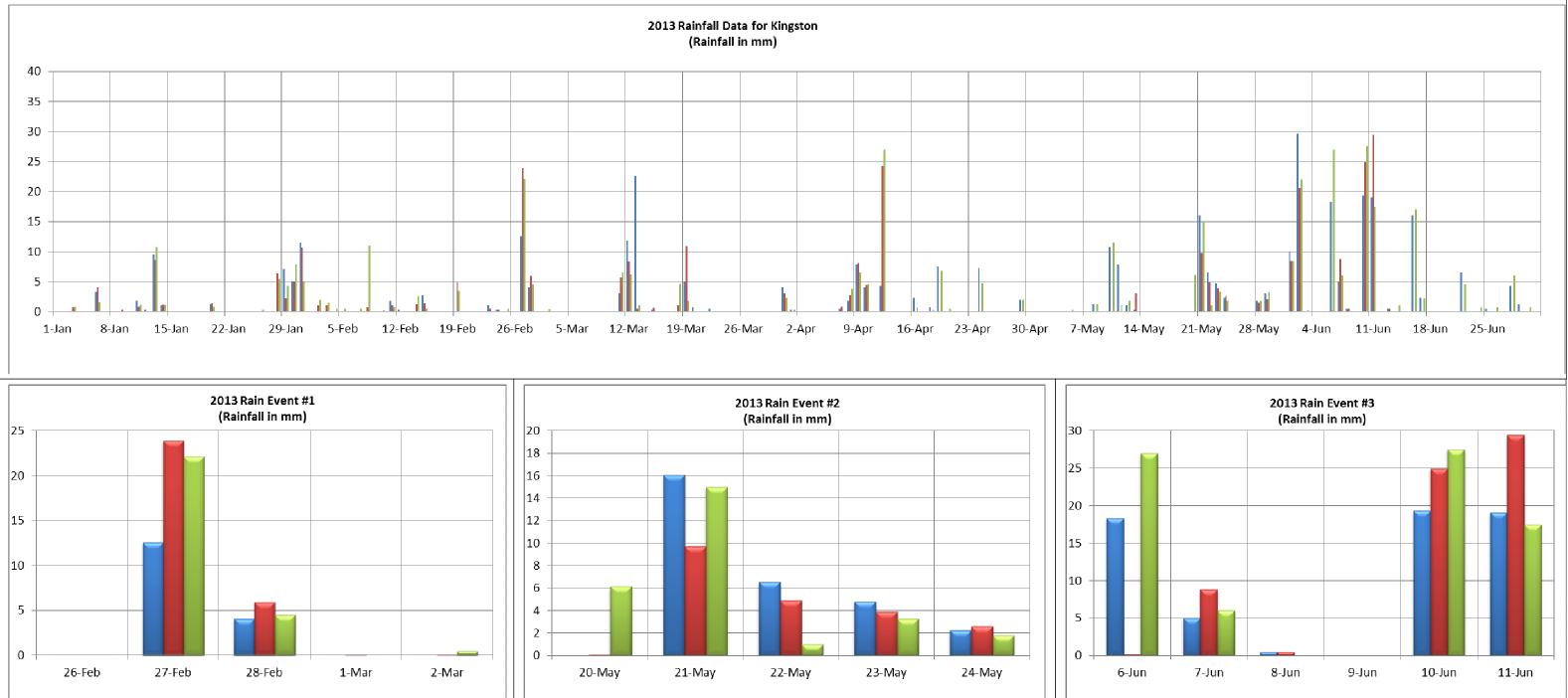


Figure 3 – 2: 2013 Rainfall Data Summary for Kingston Rain Gauge Stations

Queen's University – ILC Weather Station Information collected from Queen's University

Kingston Airport Weather Station Information collected from Environment Canada

3.2.2 Flow Data

UK has provided actual 2013 flow observations from various pumping stations, trunk sewers and sewage treatment plants as indicated in **Table 3-3**. The data collected is used for the purposes of validating the inflows for the existing InfoSWMM model and for updating them during dry-weather and wet-weather calibration. The results and information is summarized in **Appendix C and D**. The data is further analysed as detailed in section 4.0 of this memo.

3.2.3 Water Consumption Data

Water consumption data was provided by UK for all billed water distribution areas for Kingston as complemented with the tri-services GIS map. This information is only used as part of the calibration process for dry-weather flow optimization and used in determination of suitable pipe infiltration for verification purposes.

3.2.4 As-Builts and SCADA information

For the purposes of updating and validating the existing and new infrastructure represented in the model both as-builts and SCADA information was used to validate pumping station details and forcemains currently in use. As previously identified in section 3.1, much of the forcemains were not represented in the model. **Drawing 3-2** of **Appendix A** depicts the forcemains and pumping stations updated from the information. Provided SCADA details are also included in **Appendix A** for reference.

3.2.5 System Upgrades, Growth Projection and Sewer Separation Reports

The system upgrade information as summarized in **Table 3-1** was provided by UK and is used for updating the model to reflect 2013 trunk sewer system conditions. In addition to the direct system upgrades WSP was also provided with an updated combined drainage area's map, development intensification details (**Table 3-2**) and reports/EA's outlining new build-out areas and future upgrades to existing infrastructure (**Table 3-4**). The reports and data provided complement the cities density intensification efforts as well as outlines the CSO reduction efforts in relation to MOE F-5-5 regulations and sewer separation progress. In general the reports are used to identify areas in the model for analysis. This information was used specifically for updating the 2013, 2026 and build-out scenario's which is used in the final analysis of the trunk sewer system when evaluating impacts for Portsmouth Pumping Station alterations. **Table 3-5** shows the combined sewer area reduction summary from the Utilities Kingston *Sewer Separation Progress, 2013* memo used in model calibration.

4.0 2013 Model Calibration

4.1 Calibration Process

The calibration process includes updating dry-weather and wet-weather sewage inflows as compared to actual flow data as a means to ensure effective representation of the trunk sewer system. The process selected is consistent with the original calibration process as outlined in CH2MHILL/XCG Consultants *Technical Memorandum's #2 and #3, 2009.* This is an iterative process involving the evaluation of the current 2008 output data, updating the model representations under dry-weather calibration and then updating the system representations for infrastructure and inflow's under a wet-weather calibration.

To update the InfoSWMM Model to 2013 the requested system upgrades were first incorporated into the model from **Table 3-1** and then new system representations were incorporated to correct the inconsistencies discussed in section 3 between the simulated and actual flow data. By following this process the method allows the benefit of 2008 model information to be updated and interpolated to 2013 for calibration in conjunction with the required data formatting to represent the design scenarios as part of the Portsmouth PS redirection analysis.

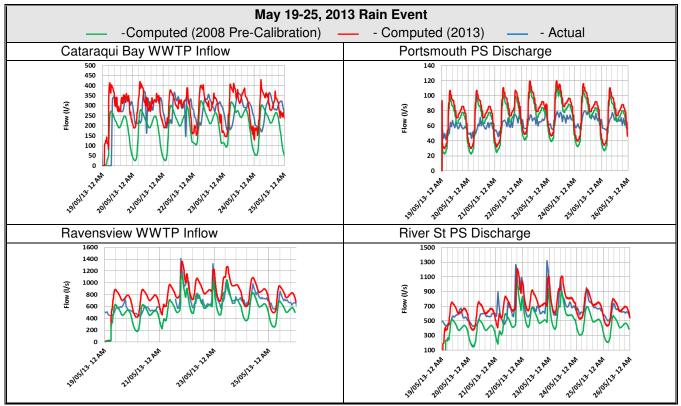
4.2 Calibration Targets

The model calibration/validation targets were selected based on the original calibration conducted by CH2MHILL/XCG Consultants as detailed in *Technical Memorandum #2, 2009* and summarized in **Table 4-1**. Emphasis is made towards more accurate representation of the wet-weather conditions for the purposes of evaluating peak flow system conditions.

Table 4 - 1: Dry and Wet Weather Calibration Criteria

Veather Flow Targets
Simulated dry-weather peak flows and volumes to be within 10%
f observed values
The timing of simulated peak dry-weather flows will be within 1 hour
of observed values.
Veather Flow Targets
Simulated peak wet-weather flows will be within -15% to $+25\%$
f observed values
Simulated wet-weather events volumes will be within -10% to $+20\%$
f observed values.

4.3 Dry-Weather Calibration

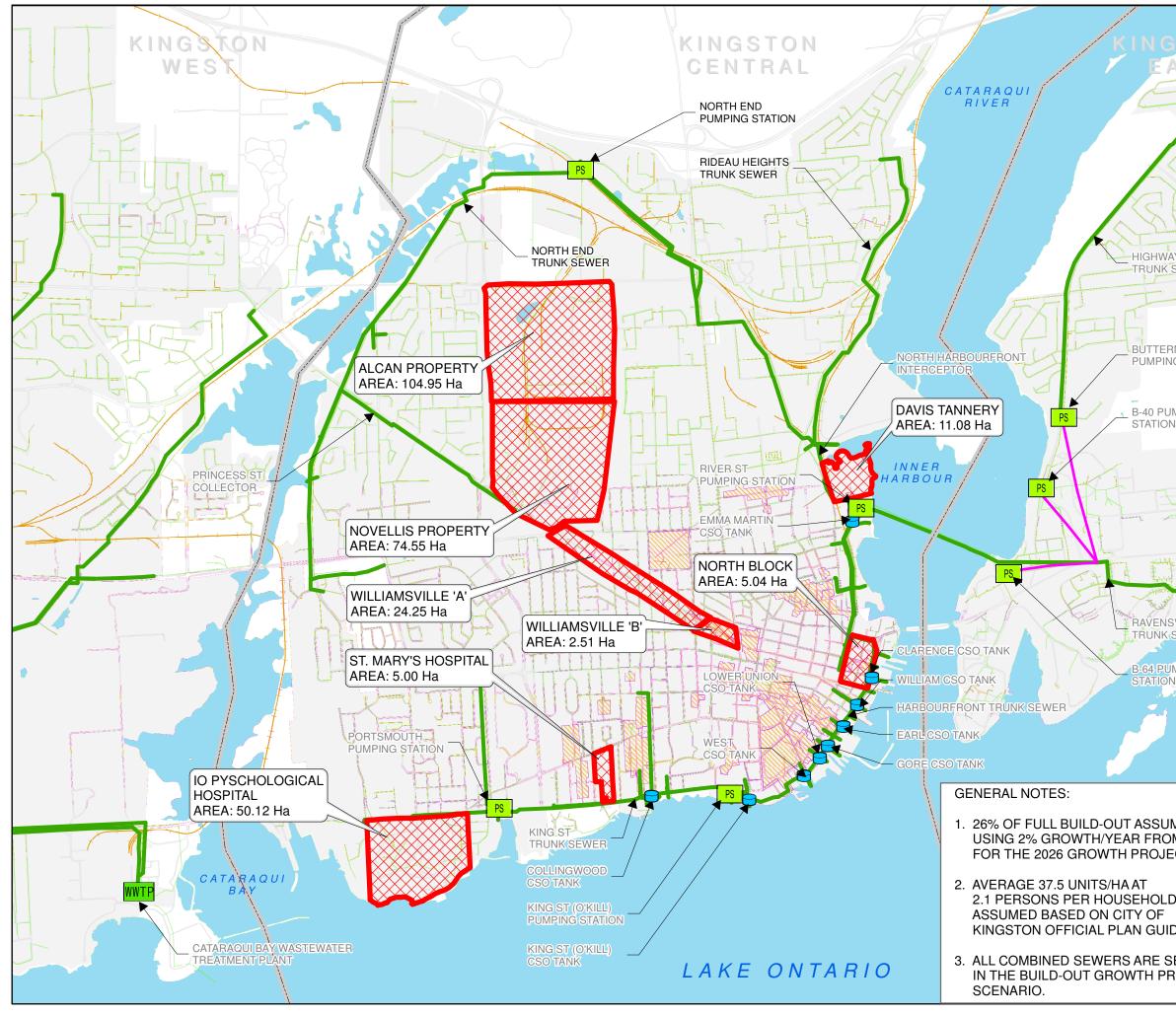

Dry-weather calibration accounts for solely the sanitary system loadings when no rain or extraneous flow is to be observed. The original calibration documented in CH2MHILL/XCG Consultants *Technical Memorandum #3, 2009* included a dry-weather flow optimization to determine the sanitary loadings with the absence of pipe infiltration during 2008; therefore the dry-weather recalibration was initiated by updating the model to 2013 inflow conditions and then running model simulations by selecting a period where no rainfall was observed from weather stations in order to compare to actual flow data. The model was updated to 2013 inflow conditions by interpolating between base 2008 conditions to 2026 growth projections already calibrated by using the 2% per year growth scenario from the City of Kingston Official Plan. A summary of the updated inflow parameters from the interpolation is presented in **Table C2** in **Appendix C**.

The next step in the recalibration was to determine if the original model calibration assumptions were adequate based on the dry-weather flow optimization documented in CH2MHILL/XCG consultants Technical Memorandum #3, 2009. Model tests were first computed for the dry weather period between March24-30, 2013 where the outputs were compared to actual flow data. The majority of the results were found to be within the target calibration ranges presented in **Table 4-1**, however prior to altering the previously developed diurnal patterns for Kingston West, Central and East areas there were notable peak dry-weather flows that were outside of the flow targets; specifically the Portsmouth PS and River St. PS which showed peaking factors that were 25% over or under actual flow values, with intermediate peaks they were found within the 10% target. The simulated King St. PS Inflow also showed a lot of 'scatter' as a result of flow assumptions for the various pumps as documented in the original calibration. At this point the model was updated with new system representations based on observations in section 3.0 before system upgrades were applied to avoid any misrepresentations observed in the 2008 model review. Once these updates were completed using available as-built information the results were compared to the actual 2013 flow data again where results were found to be within the target calibration ranges from Table 4-1 including Portsmouth PS, River St. PS and King St. PS. This indicated that a new flow optimization would not be required and billed water consumption information would not be utilized for recalibration. The results of these tests are shown for the dry-weather period of March 24-30, 2013 is presented in Appendix C.

From these results a wet-weather calibration was conducted next to adjust the infiltration from wetweather storm events.

4.4 Wet-Weather Calibration

Wet-weather calibration includes the adjustment of model variables related to pipe infiltration from extraneous flow. This includes the creation and adjustment of sub-catchment areas to represent the combined sewers in the Kingston trunk sewer system. The InfoSWMM model was originally calibrated to various rain events during 2008 which was considered a wet-year. To recalibrate to 2013 conditions, rain events were selected using gathered information as summarized in section 3.2.1 for February, May and June. The MAP rain events were inputted into the model and tests were run to compare the diurnal and peaking factors (peakiness) of total inflow/discharge for pumping stations, pipes and sewage treatment facilities. The results varied across each storm event. Overall the results as summarized in **Drawings 4.1-4.2** and **Tables D1-D3** in **Appendix D** showed that sewer system updates made during the dryweather calibration provided a good representation of the 2013 conditions especially in comparison with pre-calibration reported values prior to the model updates. A summary of the main calibration results for the May wet-weather event calibration is shown in **Table 4-2**


Anomalies were observed during the major June rain event simulation where there was a large peaking event on June 12th that was not being represented appropriately by the model simulations. This event was found to be unique and two different conditions were observed to represent the suspected anomaly. Firstly, the rain gauge information for this event showed largely varying results between River St PS Weather Station and the ILC Beamish-Munroe Weather station where the mean areal projected value may not have been an appropriate representation for parts of the City during this time period. Secondly, the modelling software is limited in its projection of longer term rain events where lag effects may occur. These effects are the conditions when water that doesn't escape the sewer system in the occurrence of prolonged surcharging and capacity accidence where the modelling software assumes pressurized conditions in pipes. Based on this, the final wet-weather calibration was compared to the May and February event where computed findings in comparison with actual flow data yielded simulations within the calibration targets presented in **Table 4-1**.

5.0 Projection Scenarios

5.1 Methodology and Assumptions

The methods and assumptions followed for developing future projection scenarios are built upon CH2MHILL/XCG Consultants *Technical Memorandum #4, 2009*. Further to the memo, which details the growth methods and assumptions represented in the model from known development in 2008, additional development intensification details for the City of Kingston Urban Area were provided by UK to represent the 2026 and Build-out scenarios as previously shown in **Table 3-2** of section 3.0. The current UK CSO reduction plan was also provided which showed the phased reduction of CSO catchment areas within Kingston Central where the ultimate build-out goal is to help eliminate existing CSO's by means of combined sewer separation. The assumptions and methods documented in the reports were used to develop growth projection scenario's that reflect the current 2013 objectives and each growth projection identified by first calculating the suspected dry-weather inflow generated as presented in **Tables E1-E3** of **Appendix E**.

It is to be noted that the 2026 and build-out projections were updated from the previously calibrated dryweather inflows in CH2MHILL/XCG Consultants *Technical Memorandum #3, 2009*. The sub-catchment areas were updated during the recalibration using the information provided in the mapping information included in the UK *CSO Reduction Plan, 2012*.

STON	1224 GARDINERS RD, SUITE 201 KINGSTON, ONTARIO, CANADA, K7P 0G2 WWW.WSPGROUP.COM								
		Jtilities Kingston	UTILTIES KINGSTON P.O. BOX 790, KINGSTON, ONTARIO, K7L 4X7						
P > \$	- Legend:								
AY 15	WWTP - ۱	WASTEWATE	R TREATMENT PLANT						
SEWER	PS - F	PUMPING STA	ATION (TRUNK)						
	_	CSO TANK							
RNUT CREEK IG STATION			MBINED SEWER EMAIN/SEWER						
			L REPRESENTATON)						
MPING N	- (CATCHMENT	AREA						
	- F	PORTSMOUT	H PS SERVICE AREA						
THE F		NTENSIFICAT							
	- 2	2026 REMAIN	ING COMBINED SEWERS						
HE H	Natural Resou	Ontario Base Map rces, August 2013 on, July 2013, City	3. Sewer System,						
SVIEW	Scale:		N A						
SEWEN		0 980 M	eters w E						
MPING	1:30,000		V S						
	Project:								
	Ports		umping Station						
	Envi	-	irection						
			al Assessment						
MED M 2013	City	y of King	ston, Ontario						
ECTION.	Title: GF		ROJECTION RY MAP						
ر	Project No.:								
DELINES.		3048-00	Date: MARCH, 2014						
EPARATED ROJECTION	Drawn By:	Checked By:	Drawing No.:						
	MF	MM	5-1						

5.2 2026 Growth Scenario

The 2026 growth projection scenario was created using the inflow growth rates in the original calibration and the model adjustments are summarized on **Drawing 5-1**. This scenario accounts for 26% growth within the identified development areas using the City of Kingston Official plan guidelines (as summarised in **Table 3-2** in section 3.0 and includes partial combined sewer separation. The original dry-weather inflow parameters from the first 2026 growth projection calibration conducted in the CH2MHILL/XCG Consultants *Technical Memorandum #3, 2009* were updated to reflect the increases in population while development area's not represented were provided with a new sub-catchment representation.

Specific considerations were made for intensification area's where known development or servicing plans have already been produced. The servicing plans considered are included in **Appendix E** for reference and includes the Williamsville service area where the short-term phasing was incorporated by dividing the development into two separate areas (Williamsville 'A' and 'B').

5.3 Build-out Growth Scenario

Similar to the 2026 growth scenario, the build-out scenario was created using the model parameter inputs in the provided InfoSWMM model with specific updates to each development area as outlined in **Tables E1-E3** in **Appendix E**. Additional to the 2026 growth scenario was the complete separation of all combined sewers to coincide with the sewer separation planned for Kingston Central. The final summary of full build-out growth projection updates to the model are presented on **Drawing 5-1**.

Once both the 2026 and build-out growth scenarios were updated all additional upgrades including the forcemain twinning of River St. pumping station and the weir height adjustment for West St. were completed to finalize the model before design storm analysis for evaluating the Portsmouth PS flow redirection to the West.

6.0 Portsmouth Pumping Station Flow Direction Analysis

6.1 Analysis Set-Up

The redirection of sanitary flow from the Portsmouth PS service area was first analyzed in CH2MHILL/XCG Consultants *Technical Memorandum #5* where the InfoSWMM model was used to evaluate the potential reductions in CSO overflows by the combination of different scenario's including combined sewer separation. The scope of this new model analysis was to evaluate impacts to the sewer system from redirection of the Portsmouth PS service area which includes the system upgrades and growth projections updated to represent the current 2013 trunk sewer conditions as well as the effects of development intensification. A single route for the forcemain connecting Portsmouth PS to the Cataraqui Bay WWTP was created in a new model which contained all of the recalibrated parameters from the 2013 model. The original forcemain connecting Portsmouth PS to the King St. trunk sewer was then deleted

since no flow was to be represented. The new forcemain for analysis was represented as a single 500mm diameter forcemain with the same pumping parameters of the original station set 2m below the existing centre line road profile of King St. W/Front Rd. This representation adequately conveys all of the Portsmouth PS service area inflow to the Cataraqui Bay WWTP. The analysis was then divided into three sub-scenario's as summarised in **Table 6-1**.

Scenario Name	Description					
East 1	-Portsmouth PS flow directed towards Ravensview WWTP					
	-Includes current upgrades					
	-Does not include development intensification					
East 2	-Portsmouth PS flow directed towards Ravensview WWTP					
	-Includes current upgrades					
	-Includes development intensification					
West	-Portsmouth PS flow directed towards Cataraqui Bay WWTP					
	-Includes current upgrades					
	-Includes development intensification					

Table 6 - 1: Portsmouth Pumping Station Flow I	Direction Analysis Scenarios
--	------------------------------

6.1.1 Base Case Scenario

The base case scenario depicts a level of service (LOS) or baseline for the current growth projections which were calibrated in the original model through public input and Utilities Kingston before being adapted into the Sewer Master Plan for evaluating the Kingston Trunk Sewer System. The East 1 scenario was developed to represent the existing 2013 condition prior to any development intensification and is used as the base case or target for the purposes of analysis.

6.2 Design Storm Evaluation

To compare the impacts of the Portsmouth PS service area being directed east or west for the Kingston trunk sewer system both AES 12-Hr design storm scenarios and the dry-weather scenario were simulated using the updated InfoSWMM model. This evaluation is consistent with the reported methodology in *CH2MHILL/XCGL's Technical Memorandum #5* where the base case scenario (East 1) is used to compare each scenario after changes in development intensification and flow diversion. The extent of upgrades to the trunk sewer system required are based on these comparisons to provide the same LOS that was originally anticipated from the Sewer Master Plan or at least to the level equal to what the redirection would provide.

6.2.1 Results

The results of the design storm analysis are presented in **Appendix F** and were divided into two (2) categories; Pump Stations (**Table F1**) & WWTP, and trunk sewers (**Table F2**). Outputs for pumping stations and wastewater treatment facilities were compared to firm and documented capacities where any peak inflow outputs higher than these quantities indicated either an overflow or blockage event. For trunk sewers individual conduits/pipes represented in the model were each analyzed for surcharging where combined sewers including King St, the North Harboufront Interceptor and the Harbourfront Trunk Sewers were analyzed for changes in CSO tank conditions.

6.2.2 Discussion

6.2.2.1 Portsmouth PS Flow Directed East towards Ravensview WWTP

Analysing the results summarized in **Appendix F** the reduction in combined sewer areas from the growth projection scenario's provided the greatest reductions in trunk sewer pumping station & WWTP flows during major storm events which was represented in both the base case (East 1) and the development intensification case (East 2).

In the majority of the simulations the dry-weather event did not exceed the firm capacity of the majority of PS and WWTP except for the full build-out scenario where firm capacity exceedance was observed at the River St. PS as summarised in **Table 6-2**.

Route Direction	Firm Capacity (L/s)	2026 Peak Inflow (L/s)	Build-Out Peak Inflow (L/s)
East 1	1,425	1,221	1,311
East 2	1,425	1,302	2,021

Table 6 - 2: River St PS Dry-Weather Storm Analysis East 1 vs. East 2

Notes:

_____ = Flow under firm capacity

= Flow exceeds firm capacity

It is to be noted that a few anomalies were observed at the King St. PS that showed firm capacity exceedences even in the dry-weather conditions. It is predicted that this is mainly due to the dynamic interaction between the PS and the King St CSO tank. However, the trends observed at the King St PS with respect to reductions from combined sewer separation were realised.

Examining the Portsmouth PS inflows from development intensification during the design analysis it was observed that there were net-increases in total inflow as summarized in **Table 6-3**.

DIE	ne 6 - 3: Portsmouth PS Design Storm Analysis East 1 vs East 2									
	Route	DW	1:2 yr	1:5 yr	1:10 yr	1:25 yr	1:50 yr	1:100 Yr		
	Direction									
	2013 Peak Inflow (L/s)									
	East 1	128	190	231	261	302	332	364		
	East 2	128	190	231	261	302	332	364		
			- 	2026 Peak	Inflow (L	⁄s)				
	East 1	132	193	235	265	305	336	365		
	East 2	145	206	247	277	317	348	380		
			Bu	ild-out Pe	eak Inflow	(L/s)				
	East 1	152	213	255	285	325	356	387		
	East 2	194	255	297	327	367	395	424		

Table 6 - 3: Portsmouth PS Design Storm Analysis East 1 vs East 2

Notes:

 Portsmouth PS Reported Firm Capacity = 285 L/s (Ministry of Environment Certificate of Approval)

- Flow under firm capacity

= Flow exceeds firm capacity

These results for the Portsmouth PS show that current LOS for dry-weather and design storms are exceeded in the East 2 scenario as compared to the base case (East 1).

Table F2 of **Appendix F** demonstrates how sewer separation for all major design storm events between the existing 2013 scenario and growth projection scenarios show reductions in pipe surcharging. In the 2026 scenario, surcharging differences were observed between the base case (East 1) and the development intensification case (East 2) in both the King Street and Ravensview Trunk Sewer as seen in **Table 6-4**. The values indicating the percentage of pipes surcharging. The severity of surcharging was also evaluated by observing the Hydraulic Grade Line (HGL) in relation to the existing ground profile where HGL 0.3m above the pipe and 2m below ground elevation, and within 2m of the existing ground elevation, which presents a risk for sanitary back-up in houses, were indicated. It can be seen that the base case (East 1) did have some severe surcharging in the King Street (1:25 yr design storm scenario and beyond) and the Ravensview (1:50 yr design storm scenario and beyond) trunk sewers. However, this is exacerbated with development intensification (East 2) and would require approximately 14% (33% - 19%) of the pipes to be upgraded in the King Street Trunk Sewer case and 21% (30% - 9%) of the pipes in the Ravensview Trunk Sewer case to meet the same LOS originally targeted.

Trunk Sewer	Route Direction	2026 Peak Inflow (L/s) Pipe Surcharging						
		DW	1:2 yr	1:5 yr	1:10 yr	1:25 yr	1:50 yr	1:100 Yr
King Street Trunk	East 1					19%	19%	43%
	East 2					33%	33%	48%
Ravensview Trunk	East 1						9%	48%
	East 2						30%	52%
Notes:	Na sina avaal							

Table 6 - 4: Trunk Sewer Design Storm Analysis for 2026 Conditions East 1 vs. East 2

= No pipe surcharging

- Pipe surcharging greater than 0.3m above pipe and 2m below ground elevation.*

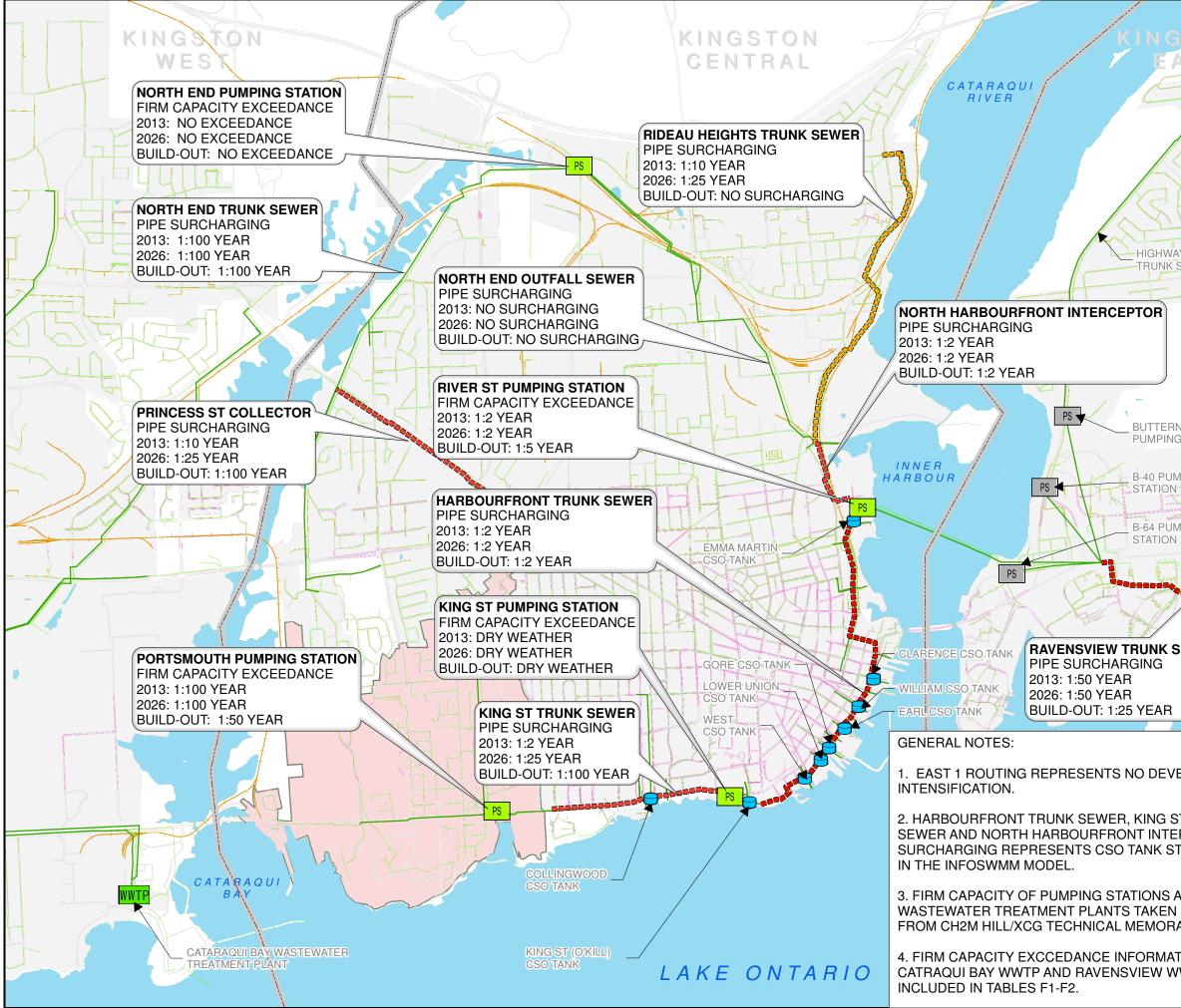
- Pipe surcharging within 2m of ground elevation.*

- *Values indicate percentage of pipes surcharged

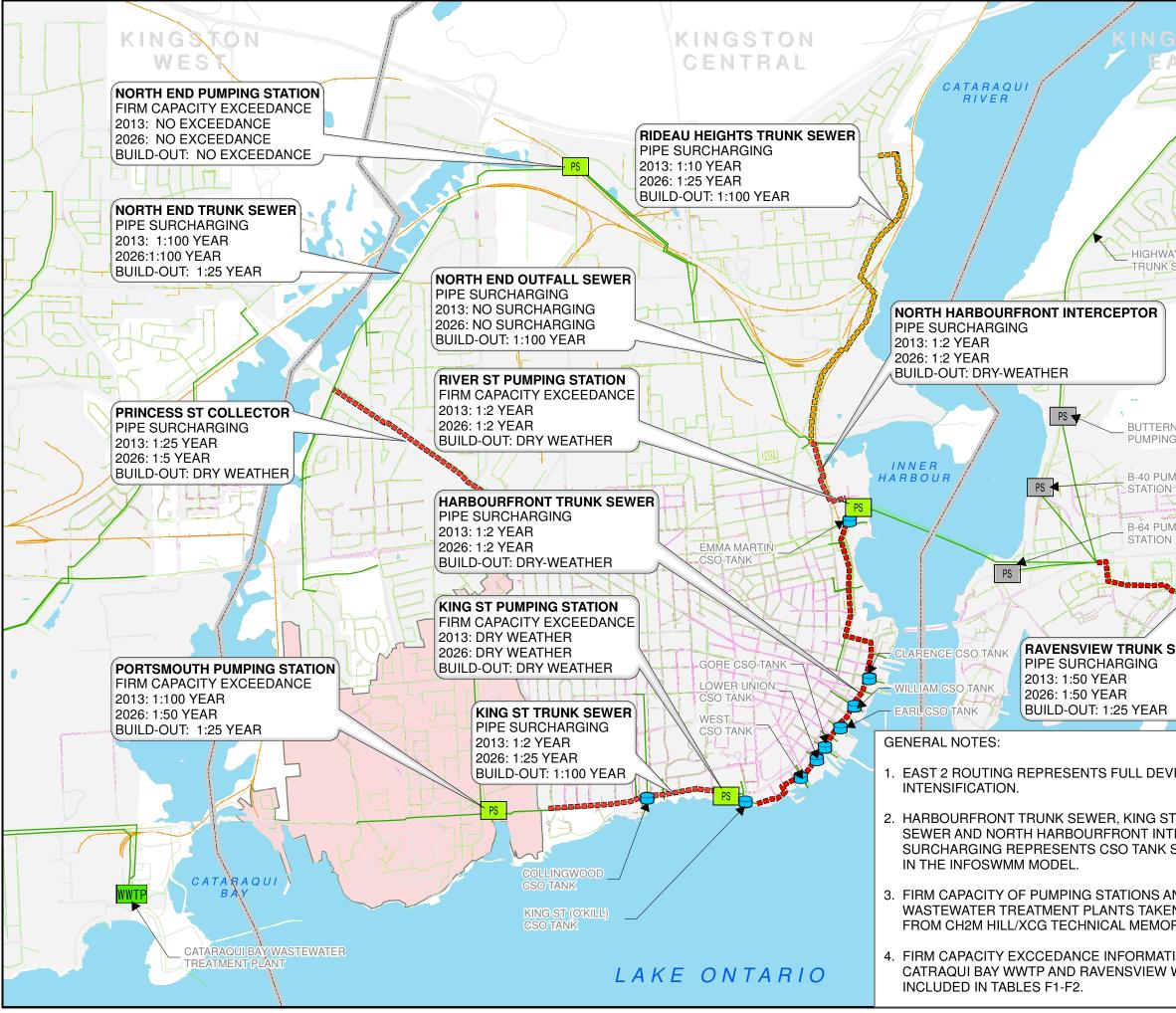
In the build-out scenario significant surcharging differences were observe between the base case (East 1) and the development intensification case (East 2) in both the North Harbourfront Interceptor and Harbourfront Trunk sewers as seen in **Table 6-5**. It can be observed that base case (East 1) did not have surcharging during the dry-weather events, however did experience surcharging with the development intensification case (East 2); 14% and 21% respectively. Although these trunk sewer systems use CSO tanks to control overflows by storage, this is a stronger indication that even with full sewer separation there will be local pipe infrastructure that will experience surcharging with the proposed development intensification.

Trunk Sewer	Route Direction	Build-Out Peak Inflow (L/s) Pipe Surcharging						
		DW	1:2 yr	1:5 yr	1:10 yr	1:25 yr	1:50 yr	1:100 Yr
North Harbourfront	East 1		14%	29%	29%	<mark>29</mark> %	<mark>29</mark> %	71%
Interceptor	East 2	14%	29%	29%	29%	<mark>29</mark> %	71%	100%
Harbourfront	East 1		19%	21%	25%	93%	93%	93%
Trunk	East 2	21%	21%	21%	79%	93%	93%	100%

Table 6 - 5: Trunk Sewer Design Storm Analysis for Build-Out Conditions EAST 1 vs. EAST 2


Notes:

- _ _ _ = No pipe surcharging
 - Pipe surcharging greater than 0.3m above pipe and 2m below ground elevation.*
- Pipe surcharging within 2m of ground elevation.*
- *Values indicate percentage of pipes surcharged


In this case the North Harbourfront Interceptor would require around 42% of the pipes to be upgraded under the 1:50yr design storm scenario to meet the same LOS target and prevent sever surcharging while the Harbourfront trunk sewer would require approximately 54% of the pipes to be upgraded under the 1:10yr storm scenario.

Pipe surcharging is even more apparent with the Princess St. Collector where the combination of the proposed development intensification for the Alcan/Novelis Property and Williamsville development will surcharge pipes within 2m of the existing ground even in the dry-weather rainfall event in the build-out projection; however this trunk sewer is not influenced by the Portsmouth PS redirection and was therefore not evaluated further.

The capacity of the linear infrastructure as compared to the base case LOS is summarised in **Drawings 6-1 and 6-2** which represent the trunk sewer system results for the East 1 and East 2 simulations respectively.

STON	WSP								
X	1224 GARDINERS RD, SUITE 201 KINGSTON, ONTARIO, CANADA, K7P 0G2 WWW.WSPGROUP.COM								
		Jtilities Kingston	UTILTIES KIN P.O. BOX KINGSTON, C K7L 4>	790, NTARIO,					
P 25	Legend:								
Ly SY	WWTP - \	WASTEWATE	R TREATMENT	PLANT					
AY 15 SEWER	PS - F	PUMPING STA	ATION (TRUNK)					
-	- (CSO TANK							
			NITARY SEWE						
			MBINED SEWI						
N			IG WITHIN 2m						
	E	EXISTING GR	OUND FOR 20	13,					
			LD-OUT CONE IG WITHIN 2m						
NUT CREEK G STATION	E	EXISTING GR	OUND FOR 20						
3 STATION		AND 2026 CO		05					
			IG WITHIN 2m OUND FOR 20						
H		CONDITIONS.							
IPING	- (CATCHMENT	AREA						
	- F	- PORTSMOUTH PS SERVICE AREA							
Flat		Ontario Base Map							
		rces, August 2013 on, July 2013, City							
	Scale:			Ņ					
SEWER	0 250 50	0 1,000 M	Meters ,						
	1:30,000								
				3					
	Project: Ports	mouth Pi	umping St	tation					
			irection						
ELOPMENT	Envi		al Assessi	nont					
			ai 7336331						
ST TRUNK	○ ;+,	of King	oton Ontr	orio					
RCEPTOR		y or mings	ston, Onta						
TORAGE	Title: DES			<u>eie</u> .					
	DESIGN STORIN ANALTSIS.								
AND	PORTSMOUTH PS ROUTING EAST 1								
ANDUM #5	Project No.:		Date:	0011					
TION FOR	131-18	3048-00	MARCH,	2014					
/WTP	Drawn By:	Checked By:	Drawing No.:						
	MF	MM	6-1						

STON	1224 GARDINERS RD, SUITE 201 KINGSTON, ONTARIO, CANADA, K7P 0G2 WWW.WSPGROUP.COM								
		Jtilities Kingston	P.O. BO KINGSTON	KINGSTON DX 790, , ONTARIO, 4X7					
AY 15 SEWER		WASTEWATE							
5	 CSO TANK EXISTING SANITARY SEWER EXISTING COMBINED SEWER TRUNK SEWER/FORCEMAIN 								
NUT CREEK	E 2 S	- SURCHARGING WITHIN 2m OF EXISTING GROUND FOR 2013, 2026 AND BUILD-OUT CONDITIONS							
G STATION	AND 2026 CONDITIONS - SURCHARGING WITHIN 2m OF EXISTING GROUND FOR 2013 CONDITIONS - CATCHMENT AREA								
MPING	- PORTSMOUTH PS SERVICE AREA								
	Scale: N 0 245 400 980 Motors								
SEWER									
	Project: Portsmouth Pumping Station Flow Direction								
ELOPMENT	Environmental Assessment								
T TRUNK FERCEPTOR STORAGE	City of Kingston, Ontario								
ND	Title: DESIGN STORM ANALYSIS: PORTSMOUTH PS ROUTING EAST 2								
N RANDUM #5	Project No.: Date: 131-18048-00 MARCH, 2014								
ION FOR WWTP	Drawn By: MF	Checked By: MM	Drawing No.: 6	-2					
		1	•						

6.2.2.2 Portsmouth PS Flow Directed West towards Cataraqui Bay WWTP

Reviewing the results for the Portsmouth PS flow directed west towards Cataraqui Bay WWTP there were multiple trends observed. Overall the flow generated from the Portsmouth PS service area being directed to the west provided net reductions in surcharging in the Kingston Central trunk sewers and reductions in peak inflows into pumping stations. Incidentally the peak inflows into the Cataraqui Bay WWTP experienced a dramatic increase while the immediate downstream King St. Trunk Sewer received a dramatic decrease as summarised in **Table 6-6 and 6-7** respectively.

Route Direction	DW	1:2 yr	1:5 yr	1:10 yr	1:25 yr	1:50 yr	1:100 Yr			
	2013 Peak Inflow (L/s)									
East 1	439	649	815	904	1,033	1,140	1,277			
West	545	953	1,012	1,143	1,315	1,455	1,624			
	2026 Peak Inflow (L/s)									
East 1	512	760	894	1,014	1,118	1,250	1.377			
West	666	953	1.095	1,265	1,424	1,581	1,744			
	Build-out Peak Inflow (L/s)									
East 1	709	954	1,1099	1,196	1,335	1,432	1,571			
West	948	1,164	1,375	1,495	1.672	1,808	1,944			

 Table 6 - 6: Cataraqui Bay WWTP Storm Analysis East 1 vs West

Notes:

-

- Cataraqui bay WWTP Peak Instantaneous Capacity = 799 L/s (Peak process instantaneous flows based on Kingston Sewer Master Plan)

- _ _ = Flow under peak instantaneous capacity

= Flow exceeds peak instantaneous capacity

Trunk Sewer	Route	2013 Peak Inflow (L/s)						
	Direction	Pipe Surcharging						
		DW	1:2 yr	1:5 yr	1:10 yr	1:25 yr	1:50 yr	1:100 Yr
King St Trunk Sewer	East 1		10%	24%	38%	48%	57%	62%
	West					33%	38%	62%

Table 6 - 7: Trunk Sewer Design Storm	Analysis for 2013 Conditions East 1 vs. West

Notes:

-

- = No pipe surcharging
- = Pipe surcharging greater than 0.3m above pipe and 2m below ground elevation.*
- = Pipe surcharging within 2m of ground elevation.*
- *Values indicate percentage of pipes surcharged

Similar to the examination in section 6.2.2.1 the Portsmouth PS peak inflow design storm simulation results for the West scenario were observed to match the East 2 scenario for development intensification conditions as shown in **Table 6-8**. Therefore, the peak inflow LOS observed in the base case (East 1) scenario is exceeded for the West scenario.

Route Direction	DW	1:2 yr	1:5 yr	1:10 yr	1:25 yr	1:50 yr	1:100 Yr			
	2013 Peak Inflow (L/s)									
East 1	128	190	231	261	302	332	364			
West	128	190	231	261	302	332	364			
	2026 Peak Inflow (L/s)									
East 1	132	193	235	265	305	336	365			
West	145	206	247	277	317	348	380			
	Build-out Peak Inflow (L/s)									
East 1	152	213	255	285	325	356	387			
West	194	255	297	327	367	395	424			

Table 6 - 8: Portsmouth PS Design Storm Analysis East 1 vs West

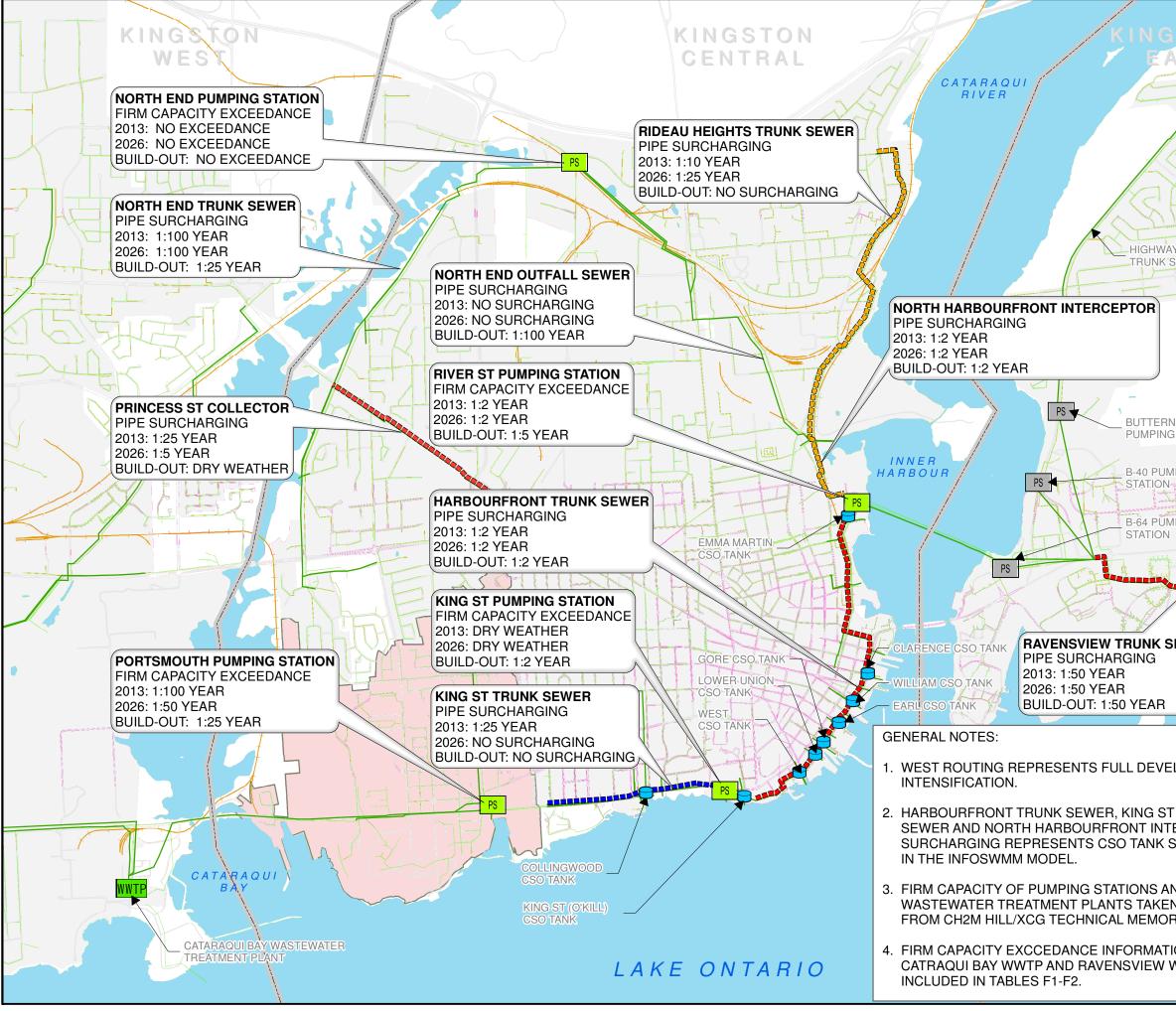
Notes:

 Portsmouth PS Reported Firm Capacity = 285 L/s (Ministry of Environment Certificate of Approval)

= Flow under firm capacity

= Flow exceeds firm capacity

Another important observation to describe is that even with separation of the service area, which provided reductions in peak inflows into Kingston Central, the peak flows going into Ravensview WWTP were almost unchanged since the loadings of the Ravensview Trunk sewer are mostly dictated by the River St. PS which pumps at capacity continuously during the major storm events. This process creates bottlenecks further upstream of the River St. PS which is either collected in CSO tanks (represented as surcharging in the Harbourfront sewer in the model simulation) or overflows out of the sewer system. Other observations show that the bottlenecks are limited only to Harbourfront Interceptor, King St Trunk Sewer, Rideau St Trunk Sewer and the Harbourfront Trunk Sewer. Although bottlenecks are observed there are total flow reductions and reduced surcharging as compared to the base case LOS as summarised in **Table 6-9**.


Trunk Sewer	Route Direction		Build-out Peak Inflow (L/s) Pipe Surcharging					
		DW	1:2 yr	1:5 yr	1:10 yr	1:25 yr	1:50 yr	1:100 Yr
North Harbourfront	East 1		14%	29%	<mark>29</mark> %	<mark>29</mark> %	<mark>29</mark> %	71%
Interceptor	West		14%	<mark>29</mark> %	<mark>29</mark> %	<mark>29</mark> %	<mark>29</mark> %	29%
King St Trunk	East 1							5%
Sewer	West							
Harbourfront	East 1					9%	43%	52%
Trunk	West						49%	52%

	Leave An electric (en Derthal Oral	
Table 6 - 9: Trunk Sewer Design St	torm Analysis for Build-Out	Conditions East 1 vs. west

Notes:

- = No pipe surcharging
- _____ = Pipe surcharging greater than 0.3m above pipe and 2m below ground elevation.*
 - = Pipe surcharging within 2m of ground elevation.*
- *Values indicate percentage of pipes surcharged

There were no flow reductions observed for the Princess St. Collector, North End Trunk Sewer and North End Outlet Trunk Sewer from Portsmouth PS service area redirection as this area does not have a direct link to these sewers. Overall the redirection of the Portsmouth PS service area west increases the required capacity at Cataraqui Bay WWTP, but provides a significant net reduction in the loadings to the Kingston Central and Kingston East sewer systems which bring the observable flows closer to the East 1 scenario results. This indicates that the combination of system upgrades, planned sewer separation and flow redirection reduces overall peak flows closer to pre-development intensification flows save and except areas unaffected by the redirection. **Drawing 6-3** summarises the results for west scenario

STON	WSP				
	1224 GARDINERS RD, SUITE 201 KINGSTON, ONTARIO, CANADA, K7P 0G2 WWW.WSPGROUP.COM				
		Jtilities Kingston	UTILTIES KINGSTON P.O. BOX 790, KINGSTON, ONTARIO, K7L 4X7		
P > q	Legend:				
- A	WWTP - \	NASTEWATE	R TREATMENT PLANT		
AY 15 SEWER	PS - F	PUMPING ST	ATION (TRUNK)		
	- (CSO TANK			
	6	EXISTING SA	NITARY SEWER		
	- 6	EXISTING CO	MBINED SEWER		
			R/FORCEMAIN		
			IG WITHIN 2m OF OUND FOR 2013,		
			LD-OUT CONDITIONS		
NUT CREEK	- SURCHARGING WITHIN 2m OF				
G STATION	EXISTING GROUND FOR 2013, AND 2026 CONDITIONS				
	SURCHARGING WITHIN 2m OF EXISTING GROUND FOR 2013				
/IPING					
H-	CONDITIONS. - CATCHMENT AREA				
/IPING					
and the second s	- PORTSMOUTH PS SERVICE AREA				
FICT	Natural Resou	Ontario Base Map rces, August 2013 on, July 2013, City	3. Sewer System,		
	Scale:		N		
SEWER	0 250 50	0 1,000	Meters w		
	1:30,000		Ť		
	Project:		0		
	-	mouth P	umping Station		
			irection		
LOPMENT	End	-			
		IOIIIIeilla	al Assessment		
T TRUNK		f 17!			
ERCEPTOR	City	y of Kings	ston, Ontario		
STORAGE	Titlo:				
			RM ANALYSIS:		
ND N	PORISN	NOUTHP	S ROUTING WEST		
N RANDUM #5	Project No.:		Date:		
ION FOR	131-18	3048-00	MARCH, 2014		
WWTP	Drawn By:	Checked By:	Drawing No.:		
	MF	MM	6-3		
		1	1		

6.3 Combined Sewer Overflows

To further compare the impacts associated with flow redirection of the Portsmouth PS service area for the Kingston trunk sewer system the 2008 wet-weather year scenario was simulated using the InfoSWMM model for a period from April 1 to October 31. This period was selected to represent comparisons between the original sewer master plan analysis conducted in *CH2MHILL/XCG Consultants Technical Memorandum #5* and the calibrated base scenario for 2013 conditions.

6.3.1 Results

The results of the CSO analysis are presented in **Table 6-10** which shows the total volume of CSO's at various overflow locations for the Kingston Central system. CSO's were compared to the base case scenario for the existing 2013 conditions before development intensification to determine the net reductions in CSO volume from sewer separation and flow redirection towards the West for the Portsmouth PS. These findings are further summarised in **Figure 6-1**.

		Evaluatio	on of CSO with Volume (m ³) (est
Location	Model I.D.	Existing Cond			h Scenario			Scenario (Bi	uild-Out)
		EAST ^{1,2} *	WEST	EAST ¹	EAST ²	WEST	EAST ¹	EAST ²	WEST
Harbourfront Trunk at West St CSO	09	51,795	40,017	36,131	40,137	24,869	23	65	0
Collingwood CSO	CELL3TOCELL4	7,417	808	803	946	0	0	0	0
King St PS (O'Kill) CSO	O36	6,540	3,780	0	0	0	0	0	0
King St (O'Kill) CSO	028	12,284	6,768	0	0	0	0	0	0
Belle Park local 1200 Overflow	034	3,250	3,179	2,346	3,062	2,733	0	0	0
Barrack Street CSO	015	1,670	1,470	1,074	1,232	977	0	0	0
Queen Street CSO	014	1,603	1,436	994	1,141	907	0	0	0
Princess Street CSO	013	1,411	1,375	1	8	7	0	0	0
Belle Park Trunk Overflow	020	1,202	1,170	180	426	355	0	0	0
River Street PS Overflow	019	447	410	0	0	0	0	0	0
Lower Union St CSO	O30	756	752	612	678	613	0	0	0
Earl St CSO	032	528	526	740	756	754	0	0	0
Gore St CSO	031	40	35	0	0	0	0	0	0
West Street Local Sewer Overflow	029	61	56	402	404	385	0	0	0
William St	033	0	0	316	316	316	0	0	0
Clarence St CSO	011	33	34	0	0	0	0	0	0
Cataraqui St CSO	017								
Brock St CSO	012								
North Street	O35								
Johnson St	010								
Albert N of King	027			Reported n	o CSO - (NO	T GRAPHED))		
Portsmouth Pump Station Overflow	O5								
North End Pump Station Overflow	021								
North End Trunk at Sherwood Overflow	022								
North End Trunk at Parkway St Overflow	023					1	1	1	
	TOTAL CSO	89,038	61,817	43,598	49,105	31,916	23	65	0
	% Reduction from Base	0%	31%	51%	45%	64%	99.97%	99.92%	100%

*Baseline CSO Condition

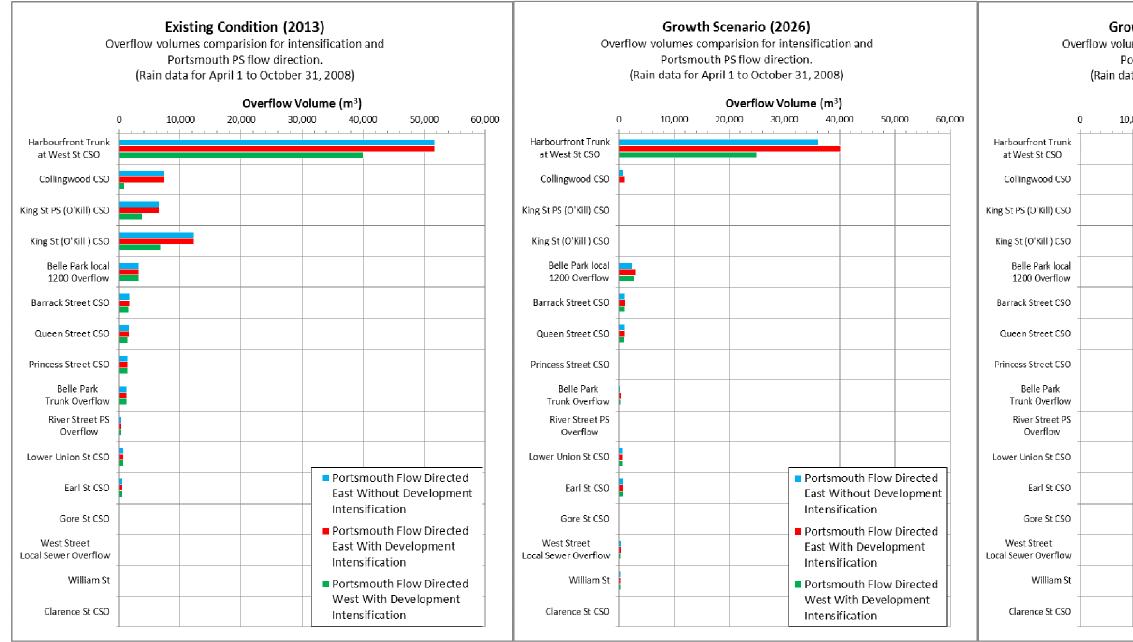


Figure 6 - 1 Combined Sewer Overflow Comparison: East 1 vs. East 2 vs. West Scenario's

	Overf	low Vo	olume	(m ³))			
0	20,000	30,0	00	40,0	000	50,0	000	60,000
					outh F			
			East Without Development Intensification					
			Portsmouth Flow Directed					
			East With Development					

6.3.2 Discussion

6.3.2.1 Portsmouth PS Flow Directed East Towards Ravensview WWTP

The most dominate trend observed between growth scenarios is the decrease in CSO's from sewer separation. This trend results in 51% reductions of total CSO's in the 2026 growth scenario and nearly a 100% reduction in CSO's in the build-out condition even with development intensification as compared to the 2013 base case. This observed trend is consistent with the sewer master plan where similar reductions were achieved while simulating the 2008 wet-year flow condition for combined sewer separation scenarios. The total CSO volume results for East 2 as compared to the baseline are summarised in **Table 6-11**.

		Condition 13)		Scenario 126)		Scenario l-Out)
	East 1	East 2	East 1	East 2	East 1	East 2
Total CSO Volume (m³)	89,038*	89,038	43,598	49,105	23	65
% Reduction from Base	0%	0%	51%	45%	99.97%	99.92%

Table 6 - 11: CSO Summary: East 1 vs East 2

Notes:

- * Baseline CSO Condition

Examining specific CSO tanks it is apparent that the increase in development intensification causes additional CSO volume for the trunk sewer systems in Kingston Central. Overall reductions are shown in the 2026 growth scenario resulting in elimination of CSO for the King St PS and King St CSO tank, however the West St, Barrack St. and Queen Street CSO tanks all experienced increases in CSO which are mostly contributed by the Williamsville and North Block proposed development intensification. One other location which received increases in CSO from development intensification was the Bellepark local 1200mm overflow. At this location the combination of the proposed Williamsville, Novelis and Alcan development intensification are all contributing factors, while sewer separation is less effective in reducing CSO's upstream along the Rideau Heights trunk sewer. This observation is consistent with the bottlenecks observed in the North Harbourfront Interceptor from River St. PS operating at continuous capacity.

Overall with the current upgrades and planned sewer separation, the CSO's are observed to be eliminated for the build-out growth scenario and there were observed net-reductions in CSO's for the short term and the 2026 growth projection in comparison to the base case (East 1); however with intensification there is an increase in comparison to the planned reduction without intensification (East 1 - 2026 growth scenario) and many upgrades would be necessary in order to reduce CSO's down to the baseline LOS observed.

6.3.2.2 Portsmouth PS Flow Directed West Towards Cataraqui Bay WWTP

Reductions in total CSO's volumes were observed when the Portsmouth PS service area inflows were redirected towards Cataraqui Bay including 31% reductions under existing conditions prior to development intensification. Up to 64% reductions were further observed as compared to the base scenario in 2026 when the current proposed combined sewer separation was also included with the redirection of the Portsmouth PS service area flow. In the build-out growth scenario there was no observable CSO in the Harbourfront Trunk Sewer which is concurrent with East 1 and East 2 development intensification scenarios that show similar results after full combined sewer separation. The total CSO volume results for West scenario as compared to the baseline is summarised in **Table 6-12**.

	0	Condition 13)		Scenario 126)		Scenario l-Out)
	East 1	West	East 1	West	East 1	West
Total CSO Volume (m³)	89,038*	61,817	43,598	31,916	23	0
% Reduction from Base	0%	31%	51%	64%	99.97%	100%

Table 6 - 12: CSO Summary: East 1 vs West

Notes:

- * Baseline CSO Condition

Examining specific CSO locations it was made apparent that the Harbourfront Trunk at West St. and the Collingwood CSO tank receives the greatest reduction of CSO's under existing conditions as compared to the base 2013 scenario from the Portsmouth PS service area flow redirection. This trend in major CSO reduction is also realised for downstream locations to the Collingwood CSO tank including the King St PS, and King St, West St, Barrack St. and Queen Street CSO tanks where CSO is reduced to almost pre-development intensification levels in the 2026 growth scenario.

In summary the reductions observed, although less substantial then complete combined sewer separation, show immediate reductions to CSO's across the Kingston Central Trunk sewer system. It is to be noted though that the overflow locations located along the Harbourfront Interceptor and North End Outlet are unaffected by the Portsmouth Service Area separation and any development intensification that contributes to the Princess St. Collector, North End Trunk Sewer, North End Outlet Sewer and Rideau Heights Trunk Sewer is also unaffected by the redirection.

7.0 Upgrades and Costs

With the analysis of the Portsmouth PS flow direction simulation for East and West options the comparisons to the base case was conducted to determine the level of upgrades necessary to meet the current baseline LOS or at least to the level that the redirection would provide. Refer to Appendix G for cost estimate of upgrades.

7.1 Portsmouth PS Flow Directed East Towards Ravensview WWTP

Considerations to support the current trunk sewer system layout would be to upgrade the capacity of existing pumping stations and associated trunk sewers and forcemains as necessary to match the baseline LOS or redirection, whichever is greater) to help reduce flow capacity exceedences and pipe surcharging during major storm events. The system upgrades based on the model simulation would include local trunk sewer upsizing and PS capacity increases as summarised in **Table 7-1**.

	Pumping Stations			
Pumping Station	Upgrades Required to Match Base Case LOS	Opinion of Probable Cost (OPC)		
River Street PS	Additional capacity to accommodate full Build- out Growth Projection ~ 424L/s peak instantaneous flow*	\$3,600,000		
	Trunk Sewers			
Pumping Station	Upgrades Required to Match Base Case LOS	Opinion of Probable Cost (OPC)		
North Harbourfront	Additional pipe capacity upgrades to accommodate 2026 Growth Projection ~ 15% of Trunk Sewer Pipes	N/A		
Interceptor	Additional pipe capacity upgrades to accommodate Build-out Growth Projection ~ 40% of Trunk Sewer Pipes (Max. Upgrade Size - 1,200mmø)	\$1,100,000		
King Street Trunk Sewer	Additional pipe capacity upgrades to accommodate 2026 Growth Projection ~ 15% of Trunk Sewer Pipes (Max. Upgrade Size - 1,050mmø)	\$900,000		
Harbourfront Trunk Sewer	Additional pipe capacity upgrades to accommodate 2026 Growth Projection ~ 55% of Trunk Sewer Pipes (Max. Upgrade Size - 1,200mmø)	\$6,500,000		

$\mathbf{T} \mathbf{I} \mathbf{I} = \mathbf{I} \mathbf{O} \mathbf{O} \mathbf{I}$			
lable 7 - 1: Sewer System	Updrades for Reducin	d Flow Capacity	/ Exceedance: East Routing
······································		J	

Ravesnview Trunk Sewer	Additional pipe capacity upgrades to accommodate 2026 and Build-out growth projection ~ 20% of Trunk Sewer Pipes (Max. Upgrade Size - 1,350mmø)	\$2,400,000
Notoe:		

Notes:

* values calculated from comparing to redirection values

- Ravensview WWTP upgrades are not included. Separate Environmental Assessments due to the complexity of the upgrades required. A detailed analysis would be required to determine cost.
- Upgrades to trunk sewers identified to be outside the service area redirection area of influence including the North End Outfall, North End, Princess St Collector and Rideau Heights trunk sewers are not included.
- Percent value of trunk sewer pipes represents the amount of trunk sewer upgrades necessary to reduce pipe surcharging to match the baseline LOS conditions.
- For the purposes of calculating comparison upgrade cost for trunk sewers, it was assumed that the upgrades would be completed starting at the downstream end for the percentage of pipes indicated. The average size for that section was determined and it was then assumed at a maximum of 2 pipes size increase would be required for the upgrades.

In order to accommodate for the increase in development many parts of the CSO system would need to be upgraded to provide a reduction in volume from 45% to 51% to match the baseline reduction. The additional 6% in CSO reductions would need to be achievable by providing additional CSO storage tanks to the Harbourfront Trunk at West St, Collingwood, Belle Park Local 1200mm, Barrack St, Queen St., Belle Park Trunk and Lower Union St. CSO's. A summary and upgrades and probable costs are summarised in **Table 7-2**.

CSO Location	Upgrades Required to Match Base Case LOS in 2026 Growth Projection	Opinion of Probable Cost (OPC)		
Harbourfront Trunk at West St. CSO	Storage Increase $\sim 4,006 \text{m}^3$	\$4,000,000		
Collingwood CSO	Storage Increase ~ 143m ³	\$400,000		
Belle Park Local 1200 Overflow*	Storage Increase ~ 329m ³	\$600,000		
Barrack Street CSO	Storage Increase ~ 158m ³	\$400,000		
Queen Street CSO	Storage Increase ~ 147m ³	\$400,000		
Belle Park trunk Overflow*	Storage Increase $\sim 71 \text{m}^3$	\$300,000		
Lower Union St CSO	Storage Increase $\sim 65 \text{m}^3$	\$200,000		

Table 7 - 2: Sewer System Upgrades for Reducing Combined Sewer Overflows: East Routing

Notes: * values calculated from comparing to redirection values

- Additional CSO capacity under 50m³ from the base case LOS not included

It should be noted that the required capacity increase at the Harbourfront Trunk at West St. CSO is significant and based on the location of this infrastructure would be difficult to provide the required storage due to the approximate size of the tank.

7.2 Portsmouth PS Flow Directed West Towards Cataraqui Bay WWTP

In accordance with the model simulation analysis it was determined that the majority of reductions in sanitary flow towards the East by the West routing option provided conditions where the baseline LOS was either met or surpassed. In this case the only necessary upgrades would be to the Portsmouth PS and for infrastructure required to convey flows to the Cataraqui Bay WWTP in support of development intensification. **Table 7-3** summarises these upgrades.

Pumping	Upgrades Required	Opinion of
Station	to Match Base Case LOS	Probable Cost
		(OPC)
Portsmouth PS	New forcemain and larger pumping station required to convey Portsmouth PS service area flows West towards Cataraqui Bay WWTP ~ Total 424L/s Peak Instantaneous (for full Build-out growth projection)	\$9,175,000

Table 7 - 3: Sewer System Upgrades for

Notes:

- Cataraqui Bay WWTP upgrades are not included. Separate Environmental Assessments due to the complexity of the upgrades required. A detailed analysis would be required to determine cost.

- Upgrades to trunk sewers identified to be outside the service area redirection area of influence including the North End Outfall, North End, Princess St Collector and Rideau Heights trunk sewers are not included.

Major upgrades for CSO tank infrastructure would not be necessary for the sewer system since netreductions are greater than the LOS observed in the base case scenario by 13%.

8.0 Conclusion

The provided InfoSWMM model for the Kingston trunk sewer system was recalibrated to the 2013 conditions after review and data collection which included remodeling growth projection scenarios to represent the suspected development intensification in Kingston Central. From this recalibration new system upgrades including a weir height adjustment to represent the West St. CSO tank upgrades and twinning the forcemain crossing the Rideau Canal from the River St. PS were completed before conducting a design storm and CSO analysis of the Portsmouth PS service area redirection.

The simulated results of the recalibrated trunk sewer model represent the shared impacts of combined sewer separation and flow redirection for the current 2013 trunk sewer conditions. The design storm and CSO analysis results for the sewer system showed that if flows are maintained to the east, significant upgrades to truck sewers, PS and CSO tanks would be required along the flow path to equal the same LOS target originally anticipated. If flows are redirected to the west, significant new infrastructure would be required to convey flows to the west; however, there is a net-reductions observed in the Kingston Central trunk sewer system immediately downstream from the Portsmouth PS service area when flows were redirected towards the Cataraqui Bay WWTP during dry-weather and major storm events. The results also show that there are net-reductions. The flow redirection, however, presents the Cataraqui Bay WWTP with a substantial increase in flows and would not contribute to reductions in the Princess St. Collector, North End Trunk Sewer, North End Outlet Sewer and Rideau Heights Trunk Sewer located upstream to the River St. PS.

A summary of the total upgrade costs between the East and West routing options are presented in **Table 8-1**.

Portsmouth PS Routing	Opinion of Probable Cost
	(OIC)
East Routing	\$20,650,000
West Routing	\$9,175,000

Table 8 - 1: Summary of Trunk Sewer System Upgrades: East vs. West Routing of Portsmouth PS

Notes:

- East routing excludes CSO capacity increases at CSO locations under 50m³ since the netreductions in CSO volume are minimal.
- Cataraqui Bay and Ravensview WWTP upgrades are not included. Separate Environmental Assessments have been conducted

9.0 References

Annual Summary Report to the Ministry of the Environment "*City of Kingston Combined Sewer Overflow Reduction & Investigation Program 2012 Summary*", Utilities Kingston, April 2013

Former Davis Tannery *"Infrastructure Servicing Study"*, WSP Canada Inc., January 2014 North Block District *"Block 4 Design Guidelines"* CIMA/NORR Consultants, October 2013

Report to Planning Committee No. PC-13-034 *"Pending and Committed Residential Development Supply – January 1, 2012 to December 31, 2013"*, City of Kingston, February 2013

Sewage Infrastructure Master Plan for the City of Kingston Urban Area, *"Final Report",* CH2MHill/XCG Consultants, September 2010 Sewage Infrastructure Master Plan for the City of Kingston Urban Area, *"Data Collection and Review -Memorandum No. 2",* CH2MHILL/XCG Consultants, March 2009

Sewage Infrastructure Master Plan for the City of Kingston Urban Area, *"Model Calibration and Validation - Technical Memorandum No. 3"*, CH2MHILL/XCG Consultants, May 2009

Sewage Infrastructure Master Plan for the City of Kingston Urban Area, *"Master Plan Growth Scenarios and Guiding principles - Technical Memorandum No. 4"*, CH2MHILL/XCG Consultants, June 2009

Sewage Infrastructure Master Plan for the City of Kingston Urban Area *"Evaluation of Alternatives and Pollution Control Updates - Technical Memorandum No. 5"*, CH2MHILL/XCG Consultants, September 2009

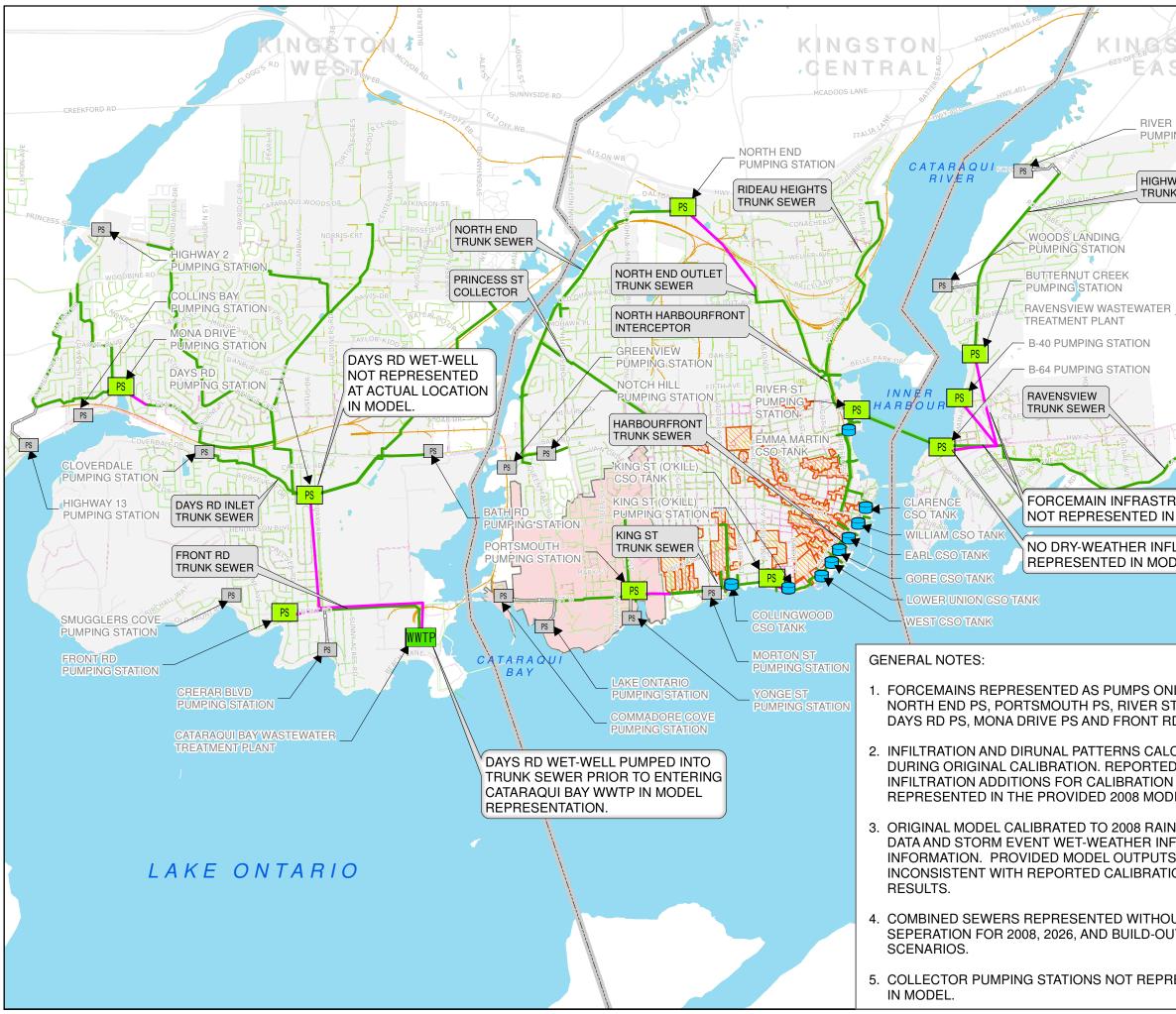
Sewer Separation Progress Memorandum, Utilities Kingston, September 2013

Technical memorandum *"River Street Pump Station Capacity Analysis"*, CH2MHILL Consultants, June 2010

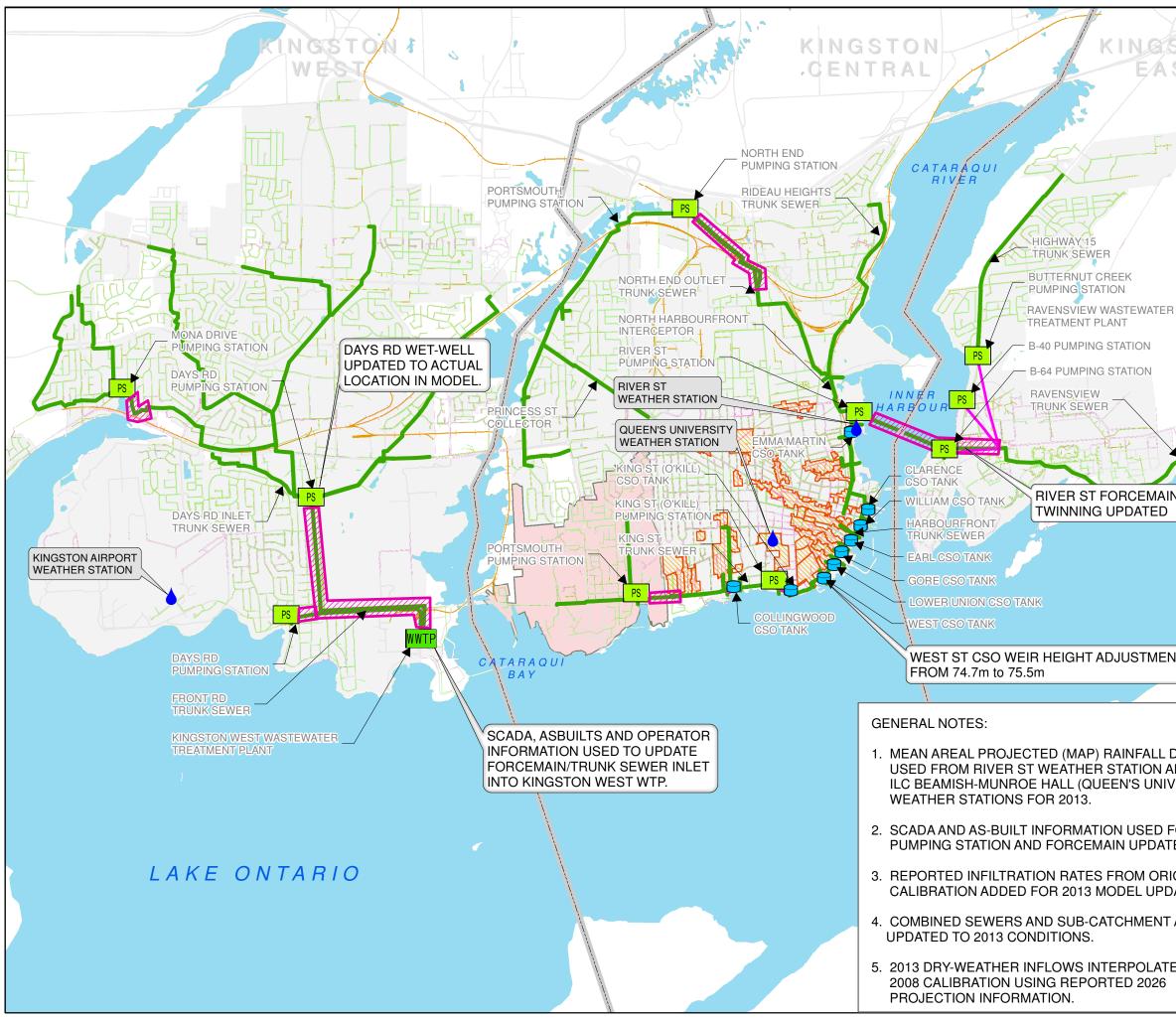
Williamsville Re-Development Memorandum, "Impact on Utilities", Utilities Kingston, December 2011

Williamsville Main Street Study Memorandum, McCormick Rankin Corporation, December 2011

Respectfully submitted,


WSP Canada Inc.

Matt Morkem, P.Eng. Municipal Engineer Michael Flowers, EIT Municipal Designer


X:\2013\131-18048-00 UK Front Rd\Class EA\Model Calibration-Analysis\131-18048-00_memo_InfoSWMM.doc

APPENDIX A

2008 Model Observations and System Upgrades

S TON S T S T S T	1224 GARDINERS RD, SUITE 201 KINGSTON, ONTARIO, CANADA, K7P 0G2 WWW.WSPGROUP.COM										
WAY 15		Jtilities Kingston	UTILTIES K P.O. BO KINGSTON, K7L 4	X 790, ONTARIO,							
	Legend:										
	<u> </u>	WASTEWATE	R TREATMEN	IT PLANT							
Signature WWTP	- 8 - 0 - 0 - 0 - 0 - 0 - 1 - 1										
ASAMARABAND	- CATCHMENT AREA										
RUCTURE N MODEL.	- COMBINED SEWER CATCHMENT - PORTSMOUTH PS SERVICE AREA										
	Data Source: Ontario Base Mapping, Minisitry of Natural Resources, August 2013. Sewer System, Utilties Kingston, July 2013, City of Kingston.										
	Scale: N										
ILY FOR T PS, D PS	0 500 1 1:50,000 Project:		000 Metres	W E S							
-	Portsmouth Pumping Station										
CULATED D N NOT DEL.	Envi	Flow D ronmenta	irection al Assess	ment							
NFALL FLOW	City	y of Kings	ston, Ont	ario							
S ARE ION		2008 TRUI DDEL OVE									
UT JT	Project No.:		Date:								
	131-18	3048-00	MARCH	l, 2014							
RESENTED	Drawn By:	Checked By:	Drawing No.:								
	MF	MM	3-	1							

STON ST			S RD, SUITE 201	
		KINGSTON CANADA	, ONTARIO, , K7P 0G2 GROUP.COM	
		Jtilities (ingston	UTILTIES KIN P.O. BOX KINGSTON, C K7L 4)	790, NTARIO,
	Legend:			
	WWTP - V	WASTEWATEI	R TREATMENT	PLANT
	PS - F	PUMPING STA	ATION (TRUNK	.)
	- \	NEATHER ST	ATION	-
\neg	- (CSO TANK		
	9	SANITARY SE	WER	
h	(COMBINED SI	EWER	
		FRUNK FORC	EMAIN/SEWE	R
145	- F	PUMP (MODE	L REPRESENT	raton)
WWTP	- l	JPDATED FO	RCEMAIN	
	- (CATCHMENT	AREA	
NG	- (COMBINED SI	EWER CATCH	MENT
		PORTSMOUT	H PS SERVICE	
	Natural Resou	Ontario Base Map rces, August 2013 on, July 2013, City	3. Sewer System,	
	Scale:			Ņ
л	0 500 1 L I	,000 2,0	000 Meters	W E
	1:50,000			v S
	Project:			
	Ports		umping S ^r	tation
		Flow D	irection	
ND 'ERISTY)	Envi	ronmenta	al Assessi	ment
OR ES	City	y of Kings	ston, Onta	ario
GINAL	Title:	DATA R	EVIEW:	
ATE.	SEWER		S UPGRAD	ES MAP
AREAS	Project No.:		Date:	
		3048-00	MARCH,	2014
ED FROM	Drawn By:	Checked By:	Drawing No.:	
	MF	MM	3-2	
			52	

APPENDIX B

Rainfall and Design Strom Data

2013_MAP_RainData_Jan-Sept.txt

		2013_	_MAP_	RainData_Ja	n-Sept.t	xt
;2013 MAP for						
	of Queen	's Univer	isty	ILC Beamish	I-Munroe	Hall and River St. Weather
Station Data		Manth	Davi	llour	M	Dain (mm)
;Location	Year 2013	Month	Day	Hour	Minute 15	Rain (mm) 0.502
Kingston Kingston	2013	1 1	6 6	6 6	30	0.251
Kingston	2013	1	6	7	0	0.251
Kingston	2013	ī	õ	8	45	0.251
Kingston	2013	1	6	12	15	0.251
Kingston	2013	1	6	12	30	0.251
Kingston	2013	1	6	12	45	0.251
Kingston	2013	1	6	13	15	0.251
Kingston	2013	1	6	13	45	0.251
Kingston	2013	1	6	14	15	0.251
Kingston	2013 2013	1 1	6 6	14 17	30 0	0.251 0.251
Kingston Kingston	2013	1	11	15	30	0.251
Kingston	2013	1	11	15	45	0.251
Kingston	2013	1	11	17	15	0.251
Kingston	2013	1	$\overline{11}$	18	ō	0.251
Kingston	2013	1	11	18	15	0.251
Kingston	2013	1	11	18	30	0.251
Kingston	2013	1	11	20	0	0.251
Kingston	2013	1	12	2	45	0.251
Kingston	2013 2013	1 1	13 13	6 6	30 45	0.251 1.004
Kingston Kingston	2013	1	13	7	0	0.753
Kingston	2013	1	13	7	15	0.251
Kingston	2013	ī	13	7	45	0.753
Kingston	2013	1	13	8	0	0.502
Kingston	2013	1	13	8	15	0.251
Kingston	2013	1	13	8	30	1.757
Kingston	2013	1	13	8	45	1.255
Kingston	2013	1	13	9	0	1.255
Kingston	2013 2013	1 1	13 13	9 22	15 0	0.753 0.251
Kingston Kingston	2013	1	13	22	30	0.251
Kingston	2013	1	13	23	0	0.251
Kingston	2013	1	14	3	Õ	0.502
Kingston	2013	1	14	3	15	0.251
Kingston	2013	1	14	4	0	0.251
Kingston	2013	1	20	4	45	0.251
Kingston	2013	1	20	5	0	0.251
Kingston	2013 2013	1 1	20 20	5	30 45	0.251 0.251
Kingston Kingston	2013	1	20	5 6	45 15	0.251
Kingston	2013	1	29	21	39	0.254
Kingston	2013	1	29	21	46	0.254
Kingston	2013	1	29	21	52	0.254
Kingston	2013	1	29	21	56	0.254
Kingston	2013	1	29	22	3	0.254
Kingston	2013	1	29	22	10	0.254
Kingston	2013	1 1	29 29	22 22	14 17	0.254
Kingston	2013 2013	1	29	22	20	0.254 0.254
Kingston Kingston	2013	1	29	22	26	0.254
Kingston	2013	1	29	22	31	0.254
Kingston	2013	1	29	22	33	0.254
Kingston	2013	1	29	22	35	0.254
Kingston	2013	1	29	22	36	0.254
Kingston	2013	1	29	22	38	0.254
Kingston	2013	1 1	29	22	39	0.254
Kingston	2013	T	29	22	41	0.254

	2012	-	2013_MAP_R	ainData_3		txt
Kingston	2013	1	29	22	42	0.254
Kingston	2013	1	29	22	44	0.254
Kingston	2013 2013	1 1	29 29	22 22	46 50	0.254 0.254
Kingston Kingston	2013	1	29	22	55	0.254
Kingston	2013	1	29	23	3	0.254
Kingston	2013	1	29	23	12	0.254
Kingston	2013	1	29	23	17	0.254
Kingston	2013	1	29	23	22	0.254
Kingston	2013	1	29	23	28	0.254
Kingston	2013	1	29	23	43	0.254
Kingston	2013	1	30	9	15	0.251
Kingston	2013	1	30	12	0	0.502
Kingston	2013	1	30	12	15	0.753
Kingston	2013	1	30	12	30	0.502
Kingston	2013 2013	1 1	30 30	13 22	0 45	0.251 0.251
Kingston	2013	1	30	22	45	0.753
Kingston Kingston	2013	1	30	23	15	0.502
Kingston	2013	1	30	23	30	0.502
Kingston	2013	1	30	23	45	0.753
Kingston	2013	1	31	ō	0	1.004
Kingston	2013	1	31	0	15	0.276
Kingston	2013	1	31	0	30	0.9789
Kingston	2013	1	31	0	45	1.757
Kingston	2013	1	31	1	0	1.255
Kingston	2013	1	31	1	15	1.004
Kingston	2013	1	31	1	30	0.502
Kingston	2013	1 1	31	1	45	0.502
Kingston	2013 2013	1 1	31 31	2	0 15	0.753 0.502
Kingston Kingston	2013	1	31	1 2 2 2 3 3 3	30	0.502
Kingston	2013	1	31	2	45	0.251
Kingston	2013	1	31	3	0	0.502
Kingston	2013	1	31	3	15	0.251
Kingston	2013	1	31	3	45	0.251 0.251
Kingston	2013	1	31	4	0	0.502
Kingston	2013	1	31	4	15	0.502
Kingston	2013	1	31	4	45	0.251
Kingston	2013	2	11 11	10	15	0.251
Kingston	2013 2013	2 2 2		10 11	45 0	0.251 0.251
Kingston Kingston	2013	2	11	11	30	0.251
Kingston	2013		11	14	45	
Kingston	2013	2	11	15	30	0.251 0.251
Kingston	2013	2	11	15	45	0.251
Kingston	2013	2	12	4	0	0.251 0.251
Kingston	2013	2	15	0	0	0.251
Kingston	2013	2	15	0	30	0.251
Kingston	2013	2	15	1 1 1	0	0.251 0.251
Kingston	2013	2	15	1	15	0.251
Kingston	2013 2013	2	15 15		30 45	0.251
Kingston Kingston	2013	2	15	1 2	45	0.502 0.251
Kingston	2013	2	15	2	30	0.251
Kingston	2013	2	15	1 2 2 2	45	0.251
Kingston	2013	2	15	3	0	0.251 0.251
Kingston	2013	2	23	12	30	0.251
Kingston	2013	2	23	13	30	0.251
Kingston	2013	2	23	14	30	0.251
Kingston	2013	2	23	19	0	0.251
Kingston	2013	222222222222222222222222222222222222222	24	14	45	0.251
Kingston	2013	Z	27	3	45	0.251
				Page 2		

Constrate Constrate Constrate Constrate Constrate Kingston 2013 2 27 4 15 0.502 Kingston 2013 2 27 4 30 0.753 Kingston 2013 2 27 4 45 0.753 Kingston 2013 2 27 5 15 1.004 Kingston 2013 2 27 5 45 0.502 Kingston 2013 2 27 6 15 0.251 Kingston 2013 2 27 7 0 0.251 Kingston 2013 2 27 7 0 0.251 Kingston 2013 2 27 7 0 0.251 Kingston 2013 2 27 8 15 0.251 Kingston 2013 2 27 8 10 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 201							
kingston 2013 2 27 4 15 0.502 kingston 2013 2 27 4 45 0.753 kingston 2013 2 27 5 0 0.753 kingston 2013 2 27 5 0 0.753 kingston 2013 2 27 5 45 0.502 kingston 2013 2 27 6 0 0.502 kingston 2013 2 27 6 30 0.251 kingston 2013 2 27 7 30 0.251 kingston 2013 2 27 7 30 0.251 kingston 2013 2 27 7 45 0.251 kingston 2013 2 27 8 15 0.251 kingston 2013 2 27 9 0 0.251 kingston 2013 2 27 10 0.251 kingston 2013		2012	-				txt
Kingston 2013 2 27 7 30 0.502 Kingston 2013 2 27 7 45 0.251 Kingston 2013 2 27 8 15 0.251 Kingston 2013 2 27 8 30 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 9 45 0.251 Kingston 2013 2 27 11 30 0.251 Kingston 2013 2 27 12 0 0.251 Kingston 2013 2 27 12 30 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 13 30 0.251 Kingston 2013 2 27 15 0 0.251 Kingston 2013 2 27 16 15 0.251 Kingston </td <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>-</td> <td></td>			2			-	
Kingston 2013 2 27 7 30 0.502 Kingston 2013 2 27 7 45 0.251 Kingston 2013 2 27 8 15 0.251 Kingston 2013 2 27 8 30 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 9 45 0.251 Kingston 2013 2 27 11 30 0.251 Kingston 2013 2 27 12 0 0.251 Kingston 2013 2 27 12 30 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 13 30 0.251 Kingston 2013 2 27 15 0 0.251 Kingston 2013 2 27 16 15 0.251 Kingston </td <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td>			2				
Kingston 2013 2 27 7 30 0.502 Kingston 2013 2 27 7 45 0.251 Kingston 2013 2 27 8 15 0.251 Kingston 2013 2 27 8 30 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 9 45 0.251 Kingston 2013 2 27 11 30 0.251 Kingston 2013 2 27 12 0 0.251 Kingston 2013 2 27 12 30 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 13 30 0.251 Kingston 2013 2 27 15 0 0.251 Kingston 2013 2 27 16 15 0.251 Kingston </td <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td>			2				
Kingston 2013 2 27 7 30 0.502 Kingston 2013 2 27 7 45 0.251 Kingston 2013 2 27 8 15 0.251 Kingston 2013 2 27 8 30 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 9 45 0.251 Kingston 2013 2 27 11 30 0.251 Kingston 2013 2 27 12 0 0.251 Kingston 2013 2 27 12 30 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 13 30 0.251 Kingston 2013 2 27 15 0 0.251 Kingston 2013 2 27 16 15 0.251 Kingston </td <td></td> <td></td> <td>2</td> <td></td> <td>4 5</td> <td></td> <td></td>			2		4 5		
Kingston 2013 2 27 7 30 0.502 Kingston 2013 2 27 7 45 0.251 Kingston 2013 2 27 8 15 0.251 Kingston 2013 2 27 8 30 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 9 45 0.251 Kingston 2013 2 27 11 30 0.251 Kingston 2013 2 27 12 0 0.251 Kingston 2013 2 27 12 30 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 13 30 0.251 Kingston 2013 2 27 15 0 0.251 Kingston 2013 2 27 16 15 0.251 Kingston </td <td></td> <td></td> <td>2</td> <td></td> <td>5</td> <td></td> <td></td>			2		5		
Kingston 2013 2 27 7 30 0.502 Kingston 2013 2 27 7 45 0.251 Kingston 2013 2 27 8 15 0.251 Kingston 2013 2 27 8 30 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 9 45 0.251 Kingston 2013 2 27 11 30 0.251 Kingston 2013 2 27 12 0 0.251 Kingston 2013 2 27 12 30 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 13 30 0.251 Kingston 2013 2 27 15 0 0.251 Kingston 2013 2 27 16 15 0.251 Kingston </td <td></td> <td></td> <td>2</td> <td></td> <td>5</td> <td></td> <td></td>			2		5		
Kingston 2013 2 27 7 30 0.502 Kingston 2013 2 27 7 45 0.251 Kingston 2013 2 27 8 15 0.251 Kingston 2013 2 27 8 30 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 9 45 0.251 Kingston 2013 2 27 11 30 0.251 Kingston 2013 2 27 12 0 0.251 Kingston 2013 2 27 12 30 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 13 30 0.251 Kingston 2013 2 27 15 0 0.251 Kingston 2013 2 27 16 15 0.251 Kingston </td <td></td> <td></td> <td>2</td> <td></td> <td>5</td> <td></td> <td></td>			2		5		
Kingston 2013 2 27 7 30 0.502 Kingston 2013 2 27 7 45 0.251 Kingston 2013 2 27 8 15 0.251 Kingston 2013 2 27 8 30 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 9 45 0.251 Kingston 2013 2 27 11 30 0.251 Kingston 2013 2 27 12 0 0.251 Kingston 2013 2 27 12 30 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 13 30 0.251 Kingston 2013 2 27 15 0 0.251 Kingston 2013 2 27 16 15 0.251 Kingston </td <td></td> <td></td> <td>2</td> <td></td> <td>6</td> <td></td> <td></td>			2		6		
Kingston 2013 2 27 7 30 0.502 Kingston 2013 2 27 7 45 0.251 Kingston 2013 2 27 8 15 0.251 Kingston 2013 2 27 8 30 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 9 45 0.251 Kingston 2013 2 27 11 30 0.251 Kingston 2013 2 27 12 0 0.251 Kingston 2013 2 27 12 30 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 13 30 0.251 Kingston 2013 2 27 15 0 0.251 Kingston 2013 2 27 16 15 0.251 Kingston </td <td></td> <td>2013</td> <td>2</td> <td></td> <td>6</td> <td></td> <td></td>		2013	2		6		
Kingston 2013 2 27 7 30 0.502 Kingston 2013 2 27 7 45 0.251 Kingston 2013 2 27 8 15 0.251 Kingston 2013 2 27 8 30 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 9 45 0.251 Kingston 2013 2 27 11 30 0.251 Kingston 2013 2 27 12 0 0.251 Kingston 2013 2 27 12 30 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 13 30 0.251 Kingston 2013 2 27 15 0 0.251 Kingston 2013 2 27 16 15 0.251 Kingston </td <td>Kingston</td> <td></td> <td>2</td> <td></td> <td>6</td> <td></td> <td>0.251</td>	Kingston		2		6		0.251
Kingston 2013 2 27 7 30 0.502 Kingston 2013 2 27 7 45 0.251 Kingston 2013 2 27 8 15 0.251 Kingston 2013 2 27 8 30 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 9 45 0.251 Kingston 2013 2 27 11 30 0.251 Kingston 2013 2 27 12 0 0.251 Kingston 2013 2 27 12 30 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 13 30 0.251 Kingston 2013 2 27 15 0 0.251 Kingston 2013 2 27 16 15 0.251 Kingston </td <td></td> <td></td> <td>2</td> <td></td> <td>6</td> <td></td> <td></td>			2		6		
kingston 2013 2 27 8 30 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 10 30 0.251 Kingston 2013 2 27 12 0 0.251 Kingston 2013 2 27 12 30 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 14 15 0.251 Kingston 2013 2 27 16 15 0.251 Kingston 2013 2 27 16 15 0.251 Kingston 2013 2 27 18 45 0.251 Kingston 2013 2 27 20 30 0.251 Kingston			2				
kingston 2013 2 27 8 30 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 10 30 0.251 Kingston 2013 2 27 12 0 0.251 Kingston 2013 2 27 12 30 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 14 15 0.251 Kingston 2013 2 27 16 15 0.251 Kingston 2013 2 27 16 15 0.251 Kingston 2013 2 27 18 45 0.251 Kingston 2013 2 27 20 30 0.251 Kingston			2				
kingston 2013 2 27 8 30 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 10 30 0.251 Kingston 2013 2 27 12 0 0.251 Kingston 2013 2 27 12 30 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 14 15 0.251 Kingston 2013 2 27 16 15 0.251 Kingston 2013 2 27 16 15 0.251 Kingston 2013 2 27 18 45 0.251 Kingston 2013 2 27 20 30 0.251 Kingston			2				
kingston 2013 2 27 8 30 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 10 30 0.251 Kingston 2013 2 27 12 0 0.251 Kingston 2013 2 27 12 30 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 14 15 0.251 Kingston 2013 2 27 16 15 0.251 Kingston 2013 2 27 16 15 0.251 Kingston 2013 2 27 18 45 0.251 Kingston 2013 2 27 20 30 0.251 Kingston			2		8		
Kingston 2013 2 27 9 0 0.251 Kingston 2013 2 27 9 45 0.251 Kingston 2013 2 27 10 30 0.251 Kingston 2013 2 27 11 30 0.251 Kingston 2013 2 27 12 0 0.251 Kingston 2013 2 27 12 0 0.251 Kingston 2013 2 27 13 0 0.251 Kingston 2013 2 27 14 15 0 251 Kingston 2013 2 27 15 15 0 251 Kingston 2013 2 27 16 15 0.251 Kingston 2013 2 27 18 45 0.251 Kingston 2013 2 27 20 30 0.251 Kingston 2013 2 27 20 30 0.251 <			2		8		0.251
kingston 2013 2 27 9 45 0.251 kingston 2013 2 27 10 30 0.251 kingston 2013 2 27 12 0 0.251 kingston 2013 2 27 12 0 0.251 kingston 2013 2 27 12 30 0.251 kingston 2013 2 27 13 0 0.251 kingston 2013 2 27 14 15 0.251 kingston 2013 2 27 15 0 0.251 kingston 2013 2 27 16 15 0.251 kingston 2013 2 27 16 15 0.251 kingston 2013 2 27 18 45 0.251 kingston 2013 2 27 20 30 0.251 kingston 2013 2 28 4 30 0.251 kingst			2		9		
Kingston201322718450.251Kingston201322719450.251Kingston201322720300.251Kingston201322722150.251Kingston20132288300.251Kingston20132288300.251Kingston20132288450.251Kingston20132289150.251Kingston20132289300.502Kingston20132289450.502Kingston20132281000.251Kingston201322810150.502Kingston201322810300.502Kingston201322810450.251Kingston20132281100.251Kingston20132281100.251Kingston20133112200.251Kingston20133112200.251Kingston20133112200.502Kingston20133112300.502Kingston201331123300.502Kingston2013<			2		9		0.251
Kingston201322718450.251Kingston201322719450.251Kingston201322720300.251Kingston201322722150.251Kingston20132288300.251Kingston20132288300.251Kingston20132288450.251Kingston20132289150.251Kingston20132289300.502Kingston20132289450.502Kingston20132281000.251Kingston201322810150.502Kingston201322810300.502Kingston201322810450.251Kingston20132281100.251Kingston20132281100.251Kingston20133112200.251Kingston20133112200.251Kingston20133112200.502Kingston20133112300.502Kingston201331123300.502Kingston2013<			2				
Kingston201322718450.251Kingston201322719450.251Kingston201322720300.251Kingston201322722150.251Kingston20132288300.251Kingston20132288300.251Kingston20132288450.251Kingston20132289150.251Kingston20132289300.502Kingston20132289450.502Kingston20132281000.251Kingston201322810150.502Kingston201322810300.502Kingston201322810450.251Kingston20132281100.251Kingston20132281100.251Kingston20133112200.251Kingston20133112200.251Kingston20133112200.502Kingston20133112300.502Kingston201331123300.502Kingston2013<			2				
Kingston201322718450.251Kingston201322719450.251Kingston201322720300.251Kingston201322722150.251Kingston20132288300.251Kingston20132288300.251Kingston20132288450.251Kingston20132289150.251Kingston20132289300.502Kingston20132289450.502Kingston20132281000.251Kingston201322810150.502Kingston201322810300.502Kingston201322810450.251Kingston20132281100.251Kingston20132281100.251Kingston20133112200.251Kingston20133112200.251Kingston20133112200.502Kingston20133112300.502Kingston201331123300.502Kingston2013<			2				0.251
Kingston201322718450.251Kingston201322719450.251Kingston201322720300.251Kingston201322722150.251Kingston20132288300.251Kingston20132288300.251Kingston20132288450.251Kingston20132289150.251Kingston20132289300.502Kingston20132289450.502Kingston20132281000.251Kingston201322810150.502Kingston201322810300.502Kingston201322810450.251Kingston20132281100.251Kingston20132281100.251Kingston20133112200.251Kingston20133112200.251Kingston20133112200.502Kingston20133112300.502Kingston201331123300.502Kingston2013<			2				
Kingston201322718450.251Kingston201322719450.251Kingston201322720300.251Kingston201322722150.251Kingston20132288300.251Kingston20132288300.251Kingston20132288450.251Kingston20132289150.251Kingston20132289300.502Kingston20132289450.502Kingston20132281000.251Kingston201322810150.502Kingston201322810300.502Kingston201322810450.251Kingston20132281100.251Kingston20132281100.251Kingston20133112200.251Kingston20133112200.251Kingston20133112200.502Kingston20133112300.502Kingston201331123300.502Kingston2013<			2				
Kingston201322718450.251Kingston201322719450.251Kingston201322720300.251Kingston201322722150.251Kingston20132288300.251Kingston20132288300.251Kingston20132288450.251Kingston20132289150.251Kingston20132289300.502Kingston20132289450.502Kingston20132281000.251Kingston201322810150.502Kingston201322810300.502Kingston201322810450.251Kingston20132281100.251Kingston20132281100.251Kingston20133112200.251Kingston20133112200.251Kingston20133112200.502Kingston20133112300.502Kingston201331123300.502Kingston2013<			2				0.251
Kingston201322718450.251Kingston201322719450.251Kingston201322720300.251Kingston201322722150.251Kingston20132288300.251Kingston20132288300.251Kingston20132288450.251Kingston20132289150.251Kingston20132289300.502Kingston20132289450.502Kingston20132281000.251Kingston201322810150.502Kingston201322810300.502Kingston201322810450.251Kingston20132281100.251Kingston20132281100.251Kingston20133112200.251Kingston20133112200.251Kingston20133112200.502Kingston20133112300.502Kingston201331123300.502Kingston2013<			2				
Kingston201322718450.251Kingston201322719450.251Kingston201322720300.251Kingston201322722150.251Kingston20132288300.251Kingston20132288300.251Kingston20132288450.251Kingston20132289150.251Kingston20132289300.502Kingston20132289450.502Kingston20132281000.251Kingston201322810150.502Kingston201322810300.502Kingston201322810450.251Kingston20132281100.251Kingston20132281100.251Kingston20133112200.251Kingston20133112200.251Kingston20133112200.502Kingston20133112300.502Kingston201331123300.502Kingston2013<			2				
Kingston201322718450.251Kingston201322719450.251Kingston201322720300.251Kingston201322722150.251Kingston20132288300.251Kingston20132288300.251Kingston20132288450.251Kingston20132289150.251Kingston20132289300.502Kingston20132289450.502Kingston20132281000.251Kingston201322810150.502Kingston201322810300.502Kingston201322810450.251Kingston20132281100.251Kingston20132281100.251Kingston20133112200.251Kingston20133112200.251Kingston20133112200.502Kingston20133112300.502Kingston201331123300.502Kingston2013<		2013	2		15		0.251
Kingston201322722150.251Kingston20132284300.251Kingston20132288300.251Kingston20132289150.251Kingston20132289300.502Kingston20132289450.502Kingston20132281000.251Kingston201322810150.502Kingston201322810300.502Kingston201322810300.502Kingston201322810450.251Kingston201322810450.251Kingston20132281100.251Kingston20132281100.251Kingston20132281100.251Kingston20133112200.251Kingston20133112200.251Kingston20133112300.502Kingston20133112300.251Kingston20133112300.251Kingston20133112300.502Kingston2013 <td< td=""><td>Kingston</td><td></td><td>2</td><td></td><td></td><td></td><td></td></td<>	Kingston		2				
Kingston201322722150.251Kingston20132284300.251Kingston20132288300.251Kingston20132289150.251Kingston20132289300.502Kingston20132289450.502Kingston20132281000.251Kingston201322810150.502Kingston201322810300.502Kingston201322810300.502Kingston201322810450.251Kingston201322810450.251Kingston20132281100.251Kingston20132281100.251Kingston20132281100.251Kingston20133112200.251Kingston20133112200.251Kingston20133112300.502Kingston20133112300.251Kingston20133112300.251Kingston20133112300.502Kingston2013 <td< td=""><td></td><td></td><td>2</td><td></td><td></td><td></td><td>0.251</td></td<>			2				0.251
Kingston201322722150.251Kingston20132284300.251Kingston20132288300.251Kingston20132289150.251Kingston20132289300.502Kingston20132289450.502Kingston20132281000.251Kingston201322810150.502Kingston201322810300.502Kingston201322810300.502Kingston201322810450.251Kingston201322810450.251Kingston20132281100.251Kingston20132281100.251Kingston20132281100.251Kingston20133112200.251Kingston20133112200.251Kingston20133112300.502Kingston20133112300.251Kingston20133112300.251Kingston20133112300.502Kingston2013 <td< td=""><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td></td<>			2				
Kingston20132289150.251Kingston20132289300.502Kingston20132289450.502Kingston20132281000.251Kingston201322810150.502Kingston201322810300.502Kingston201322810300.502Kingston201322810450.251Kingston20132281100.251Kingston20132281100.251Kingston201322811150.251Kingston20133112200.251Kingston201331122300.502Kingston201331122300.502Kingston20133112300.251Kingston201331123300.502Kingston201331123300.502Kingston2013312000.753Kingston2013312000.753Kingston2013312000.502Kingston2013312100.502Kingston2013			2				
Kingston20132289150.251Kingston20132289300.502Kingston20132289450.502Kingston20132281000.251Kingston201322810150.502Kingston201322810300.502Kingston201322810300.502Kingston201322810450.251Kingston20132281100.251Kingston20132281100.251Kingston201322811150.251Kingston20133112200.251Kingston201331122300.502Kingston201331122300.502Kingston20133112300.251Kingston201331123300.502Kingston201331123300.502Kingston2013312000.753Kingston2013312000.753Kingston2013312000.502Kingston2013312100.502Kingston2013			2				0.251
Kingston20132289150.251Kingston20132289300.502Kingston20132289450.502Kingston20132281000.251Kingston201322810150.502Kingston201322810300.502Kingston201322810300.502Kingston201322810450.251Kingston20132281100.251Kingston20132281100.251Kingston201322811150.251Kingston20133112200.251Kingston201331122300.502Kingston201331122300.502Kingston20133112300.251Kingston201331123300.502Kingston201331123300.502Kingston2013312000.753Kingston2013312000.753Kingston2013312000.502Kingston2013312100.502Kingston2013			2				
Kingston20132289150.251Kingston20132289300.502Kingston20132289450.502Kingston20132281000.251Kingston201322810150.502Kingston201322810300.502Kingston201322810300.502Kingston201322810450.251Kingston20132281100.251Kingston20132281100.251Kingston201322811150.251Kingston20133112200.251Kingston201331122300.502Kingston201331122300.502Kingston20133112300.251Kingston201331123300.502Kingston201331123300.502Kingston2013312000.753Kingston2013312000.753Kingston2013312000.502Kingston2013312100.502Kingston2013			2		8		
Kingston20132289300.502Kingston20132289450.502Kingston20132281000.251Kingston201322810300.502Kingston201322810300.502Kingston201322810450.251Kingston20132281100.251Kingston20132281100.251Kingston20133112200.251Kingston20133112200.502Kingston20133112200.502Kingston20133112200.502Kingston20133112300.502Kingston20133112300.251Kingston201331123300.502Kingston201331123300.502Kingston2013312000.753Kingston2013312000.753Kingston2013312100.502Kingston2013312100.502Kingston2013312100.502Kingston20133 <td></td> <td></td> <td>2</td> <td></td> <td>9</td> <td></td> <td>0.251</td>			2		9		0.251
Kingston201322810150.502Kingston201322810300.502Kingston201322810450.251Kingston20132281100.251Kingston201322811150.251Kingston20133112200.251Kingston201331122150.251Kingston201331122300.502Kingston201331122450.502Kingston20133112300.251Kingston201331123300.502Kingston201331123300.502Kingston201331123450.502Kingston201331123450.502Kingston2013312000.753Kingston2013312000.753Kingston2013312000.502Kingston2013312100.502Kingston2013312100.502Kingston20133121300.251Kingston2013312100.502Kingston2013			2		9		
Kingston201322810150.502Kingston201322810300.502Kingston201322810450.251Kingston20132281100.251Kingston201322811150.251Kingston20133112200.251Kingston201331122150.251Kingston201331122300.502Kingston201331122450.502Kingston20133112300.251Kingston201331123300.502Kingston201331123300.502Kingston201331123450.502Kingston201331123450.502Kingston2013312000.753Kingston2013312000.753Kingston2013312000.502Kingston2013312100.502Kingston2013312100.502Kingston20133121300.251Kingston2013312100.502Kingston2013		2013	2	28	9		
Kingston201322810300.502Kingston201322810450.251Kingston20132281100.251Kingston201322811150.251Kingston20133112200.251Kingston20133112200.251Kingston201331122300.502Kingston201331122450.502Kingston20133112300.251Kingston201331123300.502Kingston201331123300.502Kingston201331123300.502Kingston201331123450.502Kingston2013312000.753Kingston2013312000.753Kingston20133120450.502Kingston2013312100.251Kingston2013312100.251Kingston2013312100.251Kingston20133121300.251Kingston20133121300.251Kingston20133							
Kingston201322810450.251Kingston20132281100.251Kingston201322811150.251Kingston20133112200.251Kingston201331122150.251Kingston201331122300.502Kingston201331122450.502Kingston20133112300.251Kingston20133112300.251Kingston201331123300.502Kingston201331123300.502Kingston201331123450.502Kingston2013312000.753Kingston2013312000.753Kingston2013312000.502Kingston2013312100.502Kingston2013312100.251Kingston20133121300.251Kingston20133121300.251Kingston2013312200.251Kingston2013312200.251	Kingston						
5		2013	2	20			0.302
5			2				0.251
5			2				
5			3				0.251
5	Kingston	2013	3		22	15	0.251
5			3		22		0.502
5			3		22		0.502
5			3		23		
5			2		23		0.251
5			ר ג		23		
5			3			-	0.753
5			3	12			
5	Kingston	2013	3	12	0	30	0.753
5	Kingston		3				0.502
5	Kingston		3		1		0.502
5			3		1		
5			ງ ວ	12 12	⊥ 2		
Page 3	KIIIYSLUII	2013	S	12		0	0.231
					Page 3		

			2012			1
Kingston	2013	2	2013_MAP_R 12		an-Sept. 30	txt 0.251
Kingston	2013	ਲ਼	12	2 3	0	0.502
Kingston	2013	3	12	3	15	0.251
Kingston	2013	3	12	3	45	0.251
Kingston	2013	3	12	4	0	0.251
Kingston	2013	3	12	4	15	0.251
Kingston	2013	3	12	4	30	0.251
Kingston	2013	3	12	4	45	1.004
Kingston	2013	3	12	5	0	0.753
Kingston	2013	3	12	5 5	15	0.251
Kingston	2013	3	12		30	0.3514
Kingston	2013 2013	2	12 12	5 6	45 0	0.9036 0.251
Kingston Kingston	2013	2	12	6	15	0.251
Kingston	2013	3	12	6	45	0.251
Kingston	2013	3	12	7	0	0.251
Kingston	2013	3	12	7	15	0.502
Kingston	2013	3	12	7	30	0.251
Kingston	2013	3	12	7	45	0.251
Kingston	2013	3	12	8	30	0.251
Kingston	2013	3	12	9	0	0.251
Kingston	2013	3	13 13	10	45	0.251 0.251
Kingston	2013 2013	2	13	11 12	15 0	0.251
Kingston Kingston	2013	2	15	12	15	0.251
Kingston	2013	3	19	12	15	0.251
Kingston	2013	3	19	12	30	0.502
Kingston	2013	3	19	13	0	0.502
Kingston	2013	3	19	13	15	0.502
Kingston	2013	3	19	13	30	0.502
Kingston	2013	3	19	13	45	0.251
Kingston	2013	3	19	14	0	0.502
Kingston	2013 2013	3 2	19 19	14 14	15 30	0.251
Kingston	2013	2	19	14	30	0.251 0.251
Kingston Kingston	2013	3	19	16	0	0.251
Kingston	2013	3	19	16	15	0.251
Kingston	2013	3	19	17	ō	0.4016
Kingston	2013	3	19	17	15	0.1004
Kingston	2013	3	19	17	30	0.251
Kingston	2013	3	20	9	0	0.251
Kingston	2013	3	20	12 14	45	0.251
Kingston	2013 2013		20 22	14	0 15	0.251 0.251
Kingston Kingston	2013	2	22	17	15	0.251
Kingston	2013	3	31	18	Ō	0.251
Kingston	2013	3	31	18	15	0.251
Kingston	2013	3	31	18	30	0.251
Kingston	2013	3	31	18	45	0.251
Kingston	2013	3	31	19	0	0.251
Kingston	2013	3	31	19	15	0.251
Kingston	2013	3	31 31	19	30	0.502
Kingston	2013 2013	ר 2	31	20 20	0 15	0.251 0.251
Kingston Kingston	2013	³ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	31	20	30	0.251
Kingston	2013	3	31	21	0	0.251
Kingston	2013	3	31	21	15	0.251
Kingston	2013	3	31	21	30	0.251
Kingston	2013	3	31	21	45	0.251
Kingston	2013	3	31	22	15	0.251
Kingston	2013	4	1	6	0	0.251
Kingston	2013 2013	4 4	7 7	11 12	30 0	0.251 0.251
Kingston	2013	4	1		0	0.201
				Page 4		

	2012		2013_MAP_R			txt
Kingston	2013	4	8	20 21	30	0.251 0.251
Kingston Kingston	2013 2013	4 4	8 8	21	15 30	0.251
Kingston	2013	4	8	21	45	0.251
Kingston	2013	4	8	22	0	0.251
Kingston	2013	4	8	23	45	0.502
Kingston	2013	4	9	0	30	0.251
Kingston	2013	4	9 9 9	0	45	0.251
Kingston Kingston	2013 2013	4 4		1 1	0 15	0.2259 0.7781
Kingston	2013	4	9 9 9	19	45	0.251
Kingston	2013	4	9	20	15	0.251
Kingston	2013	4	9 9 9	20	30	0.502
Kingston	2013	4	9	20	45	0.251
Kingston	2013 2013	4 4	9	21 21	0 30	0.753 0.251
Kingston Kingston	2013	4	9 9	22	0	0.251
Kingston	2013	4	9	22	15	0.502
Kingston	2013	4	9 9	22	30	0.251
Kingston	2013	4	9	22	45	0.502
Kingston	2013	4	9	23	0	1.004
Kingston Kingston	2013 2013	4 4	9 9	23 23	15 30	0.251 0.502
Kingston	2013	4	9	23	45	0.753
Kingston	2013	4	10	Ō	0	0.251
Kingston	2013	4	10	0	15	0.251
Kingston	2013	4	10	11	45	0.251
Kingston	2013 2013	4 4	10 10	12 12	15 30	0.502 0.251
Kingston Kingston	2013	4	10	15	30	0.502
Kingston	2013	4	10	15	45	0.251
Kingston	2013	4	10	16	45	0.502
Kingston	2013	4	10	17	0	0.502
Kingston Kingston	2013 2013	4 4	10 10	17 18	15 45	0.251 0.251
Kingston	2013	4	10	19	15	0.251
Kingston	2013	4	12	12	30	0.251
Kingston	2013	4	12	14	15	0.251
Kingston	2013	4	12 12	14 14	30	0.753
Kingston Kingston	2013 2013	4 4	12	15	45 0	0.502 0.251
Kingston	2013	4	12	15	15	0.251
Kingston	2013	4	12	15	30	0.251
Kingston	2013	4	12	15	45	0.251
Kingston	2013	4 4	12 12	16 16	0 15	0.251
Kingston Kingston	2013 2013	4	12	16	30	0.251 0.251
Kingston	2013	4	12	16	45	0.251
Kingston	2013	4	12	17	30	0.251
Kingston	2013	4	12	18	30	0.251
Kingston	2013 2013	4 4	16 16	6 10	0 45	0.251 0.502
Kingston Kingston	2013	4	16	11	15	0.502
Kingston	2013	4	16	13	15	0.251
Kingston	2013	4	16	13	30	0.502
Kingston	2013	4	16	17	30	0.251
Kingston	2013 2013	4 4	18 18	5 7	15 45	0.251 0.251
Kingston Kingston	2013	4	18	8	45 15	0.251
Kingston	2013	4	19	12	0	0.251
Kingston	2013	4	19	12	15	0.251
Kingston	2013	4	19	13	15	0.753
Kingston	2013	4	19	13 Dago 5	30	0.251
				Page 5		

	2012	2013		nData_Ja		xt
Kingston	2013	4	19	14	0	0.502
Kingston	2013	4	19	16	0	0.251
Kingston	2013	4 4	19 19	16 16	15 30	0.251 0.502
Kingston	2013 2013	4	19	17	30 15	0.251
Kingston Kingston	2013	4	19	17	30	0.251
Kingston	2013	4	19	17	45	2.008
Kingston	2013	4	19	18	0	0.251
Kingston	2013	4	19	18	15	0.251
Kingston	2013	4	19	18	30	0.753
Kingston	2013	4	19	18	45	0.502
Kingston	2013	4	19	19	15	0.251
Kingston	2013	4	24	14	45	0.502
Kingston	2013	4	24 24	15 15	15	0.753
Kingston	2013 2013	4 4	24	15	30 45	0.251 0.251
Kingston Kingston	2013	4	24	16	15	0.251
Kingston	2013	4	24	16	45	0.251
Kingston	2013	4	24	17	0	1.004
Kingston	2013	4	24	17	15	0.251
Kingston	2013	4	24	17	30	0.502
Kingston	2013	4	24	17	45	0.251
Kingston	2013	4	24	19	15	0.251
Kingston	2013	4	24	19	30	0.753
Kingston	2013 2013	4 4	24 24	19 20	45	0.502
Kingston	2013	4	24 24	20	15 30	0.753 0.251
Kingston Kingston	2013	4	24	20	0	0.251
Kingston	2013	4	24	21	15	0.251
Kingston	2013	4	29	7	45	0.251
Kingston	2013	4	29	8	0	0.502
Kingston	2013	4	29	8	15	0.251
Kingston	2013	4	29	8	30	0.251
Kingston	2013	4	29	8	45	0.251
Kingston	2013	4	29	9	0	0.251
Kingston	2013	4	29	9 16	15	0.251
Kingston Kingston	2013 2013	5 5	8 8	16	0 15	0.753 0.251
Kingston	2013	5	8	18	45	0.251
Kingston	2013	5 5	10	15	15	0.251
Kingston	2013	5 5	10	16	ō	0.1757
Kingston	2013	5	10	16	15	0.8283
Kingston	2013	5	10	20	0	0.251
Kingston	2013	5	10	20	15	1.004
Kingston	2013	5 5 5	10	21	15	0.251
Kingston	2013 2013	5	10 10	23 23	15 30	2.259 1.6817
Kingston Kingston	2013	5 5 5	10	23	45	4.0913
Kingston	2013	5	11	0	0	4.016
Kingston	2013	5	11	Ŏ	15	0.251
Kingston	2013	5	11	Õ	30	1.004
Kingston	2013	5	11	0	45	0.502
Kingston	2013	5	11	1	0	0.251
Kingston	2013	5 5 5 5 5 5 5 5 5	11	1 1 1 3	15	0.251
Kingston	2013	5	11	1 2	45	0.251
Kingston	2013 2013	5 5	11 11	3 4	45 0	0.251 0.251
Kingston Kingston	2013	5 5 5	11	4	30	0.251
Kingston	2013	5	11	5	15	0.251
Kingston	2013	5	11	6	45	0.251
Kingston	2013	5 5 5	12	4	45	0.251
Kingston	2013	5	12	19	45	0.251
Kingston	2013	5	12	20	0	0.251
				Page 6		

		201	2		. .	
Vinacton	2012	E 201		ainData_Ja		
Kingston	2013 2013	5 5	12 13	20 0	45 30	0.251 0.251
Kingston Kingston	2013	5	8	16	0	0.502
Kingston	2013	5	8	16	15	0.251
Kingston	2013	5	8	18	45	0.251
Kingston	2013	5	10	15	15	0.251
Kingston	2013	5	10	16	Ō	0.1757
Kingston	2013	5	10	16	15	0.8283
Kingston	2013	5	10	20	0	0.251
Kingston	2013	5	10	20	15	1.004
Kingston	2013	5	10	21	15	0.251
Kingston	2013	5	10	23	15	2.259
Kingston	2013	5	10	23	30	1.6817
Kingston	2013 2013	5	10 11	23	45	4.0913 4.016
Kingston	2013	5	11	0 0	0 15	0.251
Kingston Kingston	2013	5	11	0	30	1.004
Kingston	2013	5	11	ŏ	45	0.502
Kingston	2013	5	11	ĩ	0	0.251
Kingston	2013	5	$\overline{11}$	1	15	0.251
Kingston	2013	5	11	1	45	0.251
Kingston	2013	5	11	3	45	0.251
Kingston	2013	5	11	4	0	0.251
Kingston	2013	5	11	4	30	0.251
Kingston	2013	5	11	5	15	0.251
Kingston	2013 2013	5	11 12	6	45	0.251
Kingston	2013	5	12	4 19	45 45	0.251 0.251
Kingston Kingston	2013	5	12	20	45 0	0.251 0.251
Kingston	2013	5	12	20	45	0.251
Kingston	2013	5	13	õ	30	0.251
Kingston	2013	555555555555555555555555555555555555555	21	1	Õ	0.251
Kingston	2013	5	21	1	15	0.251
Kingston	2013	5	21	1	45	5.271
Kingston	2013	5	21	17	30	2.761
Kingston	2013	5	21	17	45	3.765
Kingston	2013	5	21	18	0	0.251
Kingston	2013 2013	5	21 21	22 22	30 45	2.6355 0.8785
Kingston Kingston	2013	5	22	1	0	0.251
Kingston	2013	5	22	21	45	6.275
Kingston	2013	5	23	5	30	0.251
Kingston	2013	5	23	6	15	0.251
Kingston	2013	5	23	9 9	0	0.251
Kingston	2013	5	23	9	15	1.004
Kingston	2013	5	23	9	30	1.506
Kingston	2013	5	23	9	45	0.502
Kingston	2013 2013	5	23 23	21 21	30 45	0.251
Kingston Kingston	2013	5	23	22	0	0.251 0.251
Kingston	2013	5	23	22	15	0.251
Kingston	2013	5	24		30	0.251
Kingston	2013	5	24	2	15	0.251
Kingston	2013	5	24	0 2 3 7	15	0.251
Kingston	2013	5	24	7	0	0.251
Kingston	2013	5	24	<u>7</u>	30	0.251
Kingston	2013	5	24	7	45	0.251
Kingston	2013	2	24	8	30	0.251
Kingston	2013 2013	5 5	24 24	8 9	45 0	0.251 0.251
Kingston Kingston	2013	5	24 28	9 21	30	0.251 0.251
Kingston	2013	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	28	21	45	0.251
Kingston	2013	5	28	22	0	0.502
5				Page 7		-

Vinacton	2012	F	2013_MAP_Ra	inData_J		txt
Kingston Kingston	2013 2013	5	28 28	22 22	15 30	0.251 0.251
Kingston	2013	5	28	22	45	0.251
Kingston	2013	5	29	4	30	0.251
Kingston	2013	5	29	4	45	0.502
Kingston	2013	5	29	5	0	0.502
Kingston	2013	5	29	5	15	0.251
Kingston	2013 2013	5	29 29	5 5 5	30 45	0.502 0.251
Kingston Kingston	2013	5	29	6	45	0.251
Kingston	2013	5	29	7	30	0.251
Kingston	2013	5	29	7	45	0.251
Kingston	2013	6	1	18	30	0.753
Kingston	2013	55555555555666	1	18	45	2.259
Kingston	2013 2013	6	1 1	19 19	0 45	2.51 2.008
Kingston Kingston	2013	6 6	1	20	43 0	0.753
Kingston	2013	ő	1	20	15	0.251
Kingston	2013	6 6	1	20	30	1.0542
Kingston	2013	6	1	20	45	0.2008
Kingston	2013	6	1	21	0	0.251
Kingston	2013	6	2	1	15	0.251
Kingston Kingston	2013 2013	6 6 6	2	1	30 0	0.502 0.251
Kingston	2013	6	2	2 2 2 3 3 3 3 3	15	0.5522
Kingston	2013	6 6	2	2	30	1.2048
Kingston	2013	6	2	2	45	1.004
Kingston	2013	6 6	2	3	0	0.753
Kingston	2013	6	2	3	15	0.753
Kingston Kingston	2013 2013	6 6	2	3	30 45	0.502 3.514
Kingston	2013	6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4	0	4.769
Kingston	2013	6 6	2	4	15	0.753
Kingston	2013	6	2	4	30	0.502
Kingston	2013	6	2	4	45	0.251
Kingston	2013 2013	6	2	5	0 15	0.251 1.506
Kingston Kingston	2013	6 6 6	2	5 5 5	30	1.757
Kingston	2013		2	5	45	1.757
Kingston	2013	6 6	2	5 6	0	1.255
Kingston	2013	6 6	2	6	15	1.004
Kingston	2013	6 6	2	6	30	2.761
Kingston Kingston	2013 2013			6 7	45 0	3.263 0.251
Kingston	2013	6	2	7	15	0.251
Kingston	2013	6	2 2 6 6	14	15	0.251
Kingston	2013	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6	14	30	0.251
Kingston	2013	6	6 6	14	45	0.502
Kingston	2013 2013	6	6	15 15	0 15	1.004 0.753
Kingston Kingston	2013	6	6	15	30	0.753
Kingston	2013	ő	6 6	15	45	1.004
Kingston	2013	6	6	16	0	0.502
Kingston	2013	6	6	16	15	1.004
Kingston	2013	6	6 6	16	30	0.502
Kingston Kingston	2013 2013	0 6	6	16 17	45 0	0.753 0.502
Kingston	2013	6 6 6	6	17	15	0.502
Kingston	2013	6	6	17	30	0.753
Kingston	2013	6	6 6	17	45	0.502
Kingston	2013	6 6 6	6	18	0	0.251
Kingston Kingston	2013 2013	6 6	6 6	18 18	15 30	0.753 0.502
KING5 LOII	2010	0	0		50	0.302
				Page 8		

	2012	~	2013_MAP_Ra			txt
Kingston	2013	6	6	18	45	0.502
Kingston	2013	6	6	19	0	0.251
Kingston	2013	6	6	19	15	0.251
Kingston	2013	6	6	19	30	0.251
Kingston	2013	6	6	19	45	0.502
Kingston	2013	6	6	20	0	0.502
Kingston	2013	6	6 6	20	15	0.251
Kingston	2013	6	6	20	30	0.251
Kingston	2013	6	6	20	45	0.502
Kingston	2013	6 6	6 6	21 21	15 30	0.502
Kingston	2013 2013	6	6	21	30 45	0.502 0.502
Kingston	2013	6	6	22	43 0	0.502
Kingston	2013	6	6	22	15	0.502
Kingston Kingston	2013	6	6	22	30	0.753
Kingston	2013	6		22	45	0.251
Kingston	2013	6	6 6	23	15	0.251
Kingston	2013	ő	ő	23	30	0.251
Kingston	2013	ő	7	Ō	30	0.251
Kingston	2013	ő	7	ŏ	45	0.251
Kingston	2013	6	7	1	15	0.502
Kingston	2013	Ğ	7	2	ō	0.251
Kingston	2013	6	7	2	15	0.251
Kingston	2013	6	7	2 3 3	0	0.753
Kingston	2013	6	7	3	15	0.251
Kingston	2013	6	7	4	0	0.251
Kingston	2013	6	7	4	45	0.251
Kingston	2013	6	7	6	30	0.251
Kingston	2013	6	7	7	45	0.251
Kingston	2013	6	7	8	45	0.251
Kingston	2013	6	<u>7</u>	9	30	0.251
Kingston	2013	6	7	13	45	0.251
Kingston	2013	6	7	15	0	0.251
Kingston	2013	6	7 7	17	15	0.251
Kingston	2013 2013	6	8	17 0	30 30	0.251 0.251
Kingston	2013	6 6	8	17	15	0.251 0.251
Kingston Kingston	2013	6	8 10	16	45	0.251
Kingston	2013	6	10	17	15	0.251
Kingston	2013	6	10	17	30	0.251
Kingston	2013	ő	10	17	45	0.251
Kingston	2013	õ	10	18	0	0.502
Kingston	2013	6	10	18	15	0.251
Kingston	2013	6	10	18	30	0.502
Kingston	2013	6 6	10	18	45	0.753
Kingston	2013	6	10	19	0	0.251
Kingston	2013	6	10	19	15	0.251
Kingston	2013	6 6 6	10	19	30	0.502
Kingston	2013	6	10	19	45	0.502
Kingston	2013	6	10	20	0	0.251
Kingston	2013	6 6 6	10	20	15	0.251
Kingston	2013	6	10	20	30	0.753
Kingston	2013	6	10	20	45	1.506
Kingston	2013	6 6 6	10	21 21	0 15	1.757
Kingston	2013 2013	6	10 10	21	15 30	2.259 1.255
Kingston Kingston	2013	6	10	21	45	0.753
Kingston	2013	6 6	10	22	0	1.757
Kingston	2013	6	10	22	15	2.761
Kingston	2013	õ	10	22	30	0.502
Kingston	2013	6 6	10	22	45	0.502
Kingston	2013	6	10	23	0	0.502
Kingston	2013	6	11	ō	Ō	0.251
-				P and		

	2012	~	2013_MAP_R		an-Sept	.txt	
Kingston	2013	6	11	1	15	0.251	
Kingston	2013	6	11	1	30	1.506	
Kingston	2013 2013	6 6	11 11	1 2	45 15	1.255 1.004	
Kingston	2013	6	11	2	30	1.506	
Kingston Kingston	2013	6	11	2	45	1.255	
Kingston	2013	6	11	3	0	0.251	
Kingston	2013	õ	11	3	1 5	1.004	
Kingston	2013	6	11	2 2 3 3 3	30	2.259	
Kingston	2013	6	11	3	45	1.255	
Kingston	2013	6	11	4	0	1.004	
Kingston	2013	6	11	4	15	0.753	
Kingston	2013	6	11	4	30	0.251	
Kingston	2013 2013	6 6	11 11	4 5 6	15 15	0.251 0.251	
Kingston Kingston	2013	6	11	7	45	0.251	
Kingston	2013	6	11	8	45	0.251	
Kingston	2013	õ	11	9	15	0.502	
Kingston	2013	6	11	9	30	0.502	
Kingston	2013	6 6	11	10	0	0.251	
Kingston	2013	6	11	10	15	0.251	
Kingston	2013	6	11	11	15	0.753	
Kingston	2013	6	11	11	30	1.757	
Kingston	2013 2013	6	11 13	11 14	45 15	0.251 0.251	
Kingston Kingston	2013	6 6	13	14	45	0.251	
Kingston	2013	6	16	10	0	0.251	
Kingston	2013	6	16	10	15	0.251	
Kingston	2013	6 6	16	10	45	0.251	
Kingston	2013	6	16	11	0	0.251	
Kingston	2013	6	16	11	15	0.502	
Kingston	2013 2013	6 6	16 16	11 11	30 45	0.502 1.004	
Kingston Kingston	2013	6	16	12	0	3.514	
Kingston	2013	6	16	12	15	3.263	
Kingston	2013	6	16	12	30	3.012	
Kingston	2013	6	16	12	45	2.761	
Kingston	2013	6	16	13	0	0.251	
Kingston	2013	6 6	16 17	13 11	30	0.251	
Kingston Kingston	2013 2013	6	17	12	15 30	0.251 1.4307	
Kingston	2013	6	17	12	45	0.5773	
Kingston	2013	õ	22	15	30	0.251	
Kingston	2013	6	22	15	45	0.502	
Kingston	2013	6	22	16	0	0.502	
Kingston	2013	6 6 6	22	16	15	0.753	
Kingston	2013	6	22 22	16	30	1.757	
Kingston Kingston	2013 2013	6	22	16 17	45 0	1.255 1.004	
Kingston	2013	6	22	22	45	0.251	
Kingston	2013	0 0 0 0 0 0 0 0 0 0	22	23	0	0.251	
Kingston	2013	6	25	10	30	0.251	
Kingston	2013	6	25	12	30	0.251	
Kingston	2013	6	28	5	0	0.251	
Kingston	2013 2013	6 6	28 28	6 6	0 30	0.251 0.251	
Kingston Kingston	2013	6	28	7	30	0.251	
Kingston	2013	6 6 6	28	8	30	0.251	
Kingston	2013	6	28	10	0	0.251	
Kingston	2013	6	28	10	30	0.251	
Kingston	2013	6	28	10	45	0.753	
Kingston	2013 2013	6 6	28 28	11 12	0 15	0.251 0.251	
Kingston	2013	0	20		τ.)	0.231	
				Page 10			

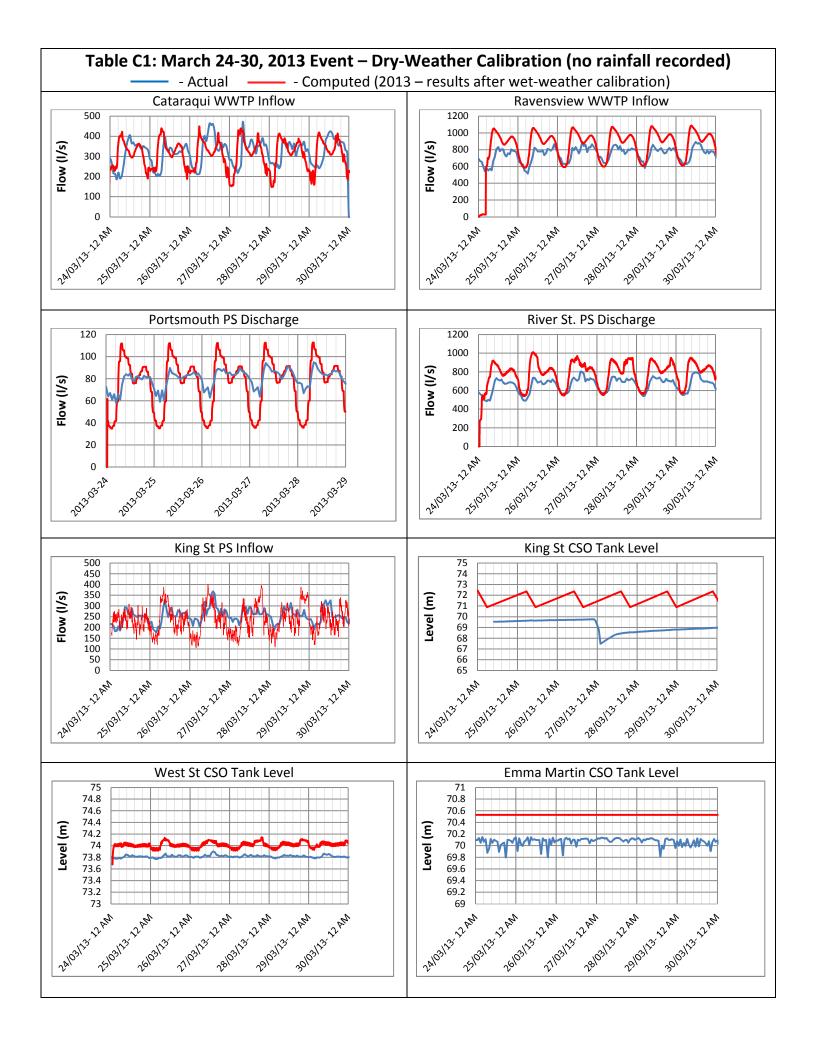
			2013 мар р-	r c+cani	$an_Sont +$	-v+
Kingston	2013	6	2013_MAP_Ra 28	110aca_J	30	0.251
	2013	6	28	13	0	0.251
Kingston	2013	6	28	14	30	0.251
Kingston	2013	6	28	17	15	0.251
Kingston		6	28	17		
Kingston	2013	0			30	0.251
Kingston	2013	6	29	0	15	1.28
Kingston	2013	7	4	10	0	1.004
Kingston	2013	7	4	10	15	0.251
Kingston	2013	7	5 5 5 5 5 5 5	5 6	15	0.251
Kingston	2013	7	2	6	0	0.251
Kingston	2013	7	5	6	15	0.502
Kingston	2013	7	5	6 6	30	0.502
Kingston	2013	7	5	6	45	0.251
Kingston	2013	7	5	7	45	0.251
Kingston	2013	7	7	6	45	0.251
Kingston	2013	7	7	10	30	0.251
Kingston	2013	7	8	19	15	0.502
Kingston	2013	7	8	19	30	0.502
Kingston	2013	7	9	1	15	0.251
Kingston	2013	7	9	18	15	1.255
Kingston	2013	7	9 9	18	30	0.502
Kingston	2013	7		19	0	0.251
Kingston	2013	7	10	8	45	0.251
Kingston	2013	7	10	9	0	0.502
Kingston	2013	7	10	9	30	0.502
Kingston	2013	7	10	9	45	0.502
Kingston	2013	7	11	14	0	0.251
Kingston	2013	7	11	14	45	0.251
Kingston	2013	7	11	18	15	0.251
Kingston	2013	7	19	18	0	0.251
Kingston	2013	7	19	20	0	1.255
Kingston	2013	7	19	20	15	3.012
Kingston	2013	7	19	20	30	2.51
Kingston	2013	7	19	20	45	0.502
Kingston	2013	7	19	21	0	0.753
Kingston	2013	7	19	21	15	0.502
Kingston	2013	7	19	21	30	0.502
Kingston	2013	7	20	4	30	0.502
Kingston	2013	7	20	4	45	0.753
Kingston	2013	7	20	5	15	0.502
Kingston	2013	7	20	5	30	0.502
Kingston	2013	7	20	11	30	0.251
Kingston	2013	8	9	9	45	0.251
Kingston	2013	8	9	10	0	0.251
Kingston	2013	8	9	10	15	0.251
Kingston	2013	8	9	9	45	0.254 0.254
Kingston	2013	8	9 9 9 9	10	0	0.254
Kingston	2013	8	9	10	15	0.254
Kingston	2013	8	14	5	15	0.254
Kingston	2013	8	14	5 5 5	30	0.762
Kingston	2013	8	14	5	45	0.254
Kingston	2013	8	22	13	45	2.8448
Kingston	2013	8	22	14	0	1.2192
Kingston	2013	8	22	14	15	1.016
Kingston	2013	8	22	14	30	0.254
Kingston	2013	8	22	14	45	0.254
Kingston	2013	8	22	15	0	0.508
Kingston	2013	8	22	15	15	0.254
Kingston	2013	8	22	16	45	0.508
Kingston	2013	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	25	23	30	0.508
Kingston	2013	8	26	1	0	0.254
Kingston	2013	8	26	10	0	0.254
Kingston	2013	8	26	16	15	0.254
				Page 11		

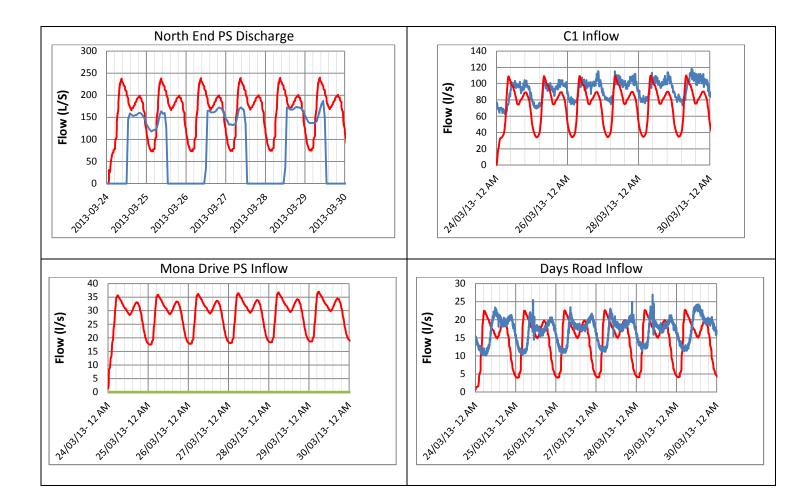
				_		
	2012	•	2013_MAP_R			.txt
Kingston	2013 2013	8 8	26 26	16 16	30 45	0.254 0.254
Kingston	2013	0 8	26	17	43	0.508
Kingston Kingston	2013	8 8	26	17	15	0.762
Kingston	2013	8	26	17	30	0.508
Kingston	2013	8 8	26	17	45	4.826
Kingston	2013	8	26	18	0	5.588
Kingston	2013	8	26	18	15	0.508
Kingston	2013	8	26	18	30	0.254
Kingston	2013	8	26	18	45	0.254
Kingston	2013	8	26	19	0	0.254
Kingston	2013 2013	8 8	26 26	20 21	30 30	0.254 0.254
Kingston Kingston	2013	0 8	26	21	45	0.254
Kingston	2013	8 8	28	4	45	0.254
Kingston	2013	8	31		15	0.762
Kingston	2013	8 8	31	3 3 3	30	0.254
Kingston	2013	8	31	3	45	0.254
Kingston	2013	8	31	4	45	0.254
Kingston	2013	8	31	5	0	0.762
Kingston	2013	8	31	5	15	1.524
Kingston	2013 2013	8 8	31 31	5 5	30 45	1.016 0.254
Kingston Kingston	2013	8	31	5 14	45	0.254
Kingston	2013	9	1	23	0	0.254
Kingston	2013	9	1	23	15	0.762
Kingston	2013	9	1	23	30	0.762
Kingston	2013	9	1	23	45	3.81
Kingston	2013	9	2	0	0	0.9398
Kingston	2013	9	2	0	15	1.0922
Kingston	2013 2013	9 9	2	0 1	45 0	$1.778 \\ 1.016$
Kingston Kingston	2013	9	2	1	15	0.254
Kingston	2013	9	1 2 2 2 2 2 7	17	15	0.254
Kingston	2013	9	7	18	45	0.0508
Kingston	2013	9	7	19	0	0.2032
Kingston	2013	9	7	20	45	0.254
Kingston	2013	9	10	5	15	0.508
Kingston	2013 2013	9 9	10 10	6 6	0 15	0.762 0.508
Kingston Kingston	2013	9	10	6	30	0.508
Kingston	2013	9	10	ĕ	45	10.1092
Kingston	2013	9	10	7	0	1.3208
Kingston	2013	9	10	7 7	15	0.254
Kingston	2013	9	10	7	30	0.254
Kingston	2013	9	10	7	45	0.254
Kingston	2013 2013	9	12 12	⊥ 2	30 0	0.254 0.254
Kingston Kingston	2013	9 9	12	2	15	0.508
Kingston	2013	ğ	12	2	45	0.762
Kingston	2013	9 9 9	12	1 2 2 3 7	45	0.254
Kingston	2013	9	12	7	0	0.254
Kingston	2013	9	12	7	30	1.778
Kingston	2013	9	12	7	45	1.016
Kingston	2013 2013	9 9 9 9	12 15	8 19	0 45	0.254 2.794
Kingston Kingston	2013	9	15	20	45 0	0.762
Kingston	2013	9 9 9	15	20	15	0.254
Kingston	2013	9	15	20	30	0.254
Kingston	2013	9 9	15	20	45	0.254
Kingston	2013	9	15	21	0	0.254
Kingston	2013	9	15	21	15	0.254
Kingston	2013	9	15	21	45	0.508
				Page 12		

1/	2012	0	2013_MAP_Rai	inData_		xt
Kingston	2013 2013	9 9	15 15	22 22	0 15	0.508 0.508
Kingston Kingston	2013	9	15	22	30	0.254
Kingston	2013	9 9	15	22	45	0.254
Kingston	2013	9	15	23	15	0.254
Kingston	2013	9	15	23	30	0.254
Kingston	2013	9	16	0	45	0.254
Kingston	2013	9	16 16	1	0	0.254
Kingston	2013 2013	9 9	16 16	1 1	15 30	0.254 0.254
Kingston Kingston	2013	9	16	2	15	0.254
Kingston	2013	9	16	9	45	0.254
Kingston	2013	9 9	21	4	0	1.524
Kingston	2013	9 9 9	21	4	15	0.254
Kingston	2013	9	21	7	45	0.254
Kingston Kingston	2013 2013	g	21 21	8 8	15 30	$3.1496 \\ 1.1684$
Kingston	2013	9 9	21	10	0	0.254
Kingston	2013	9	21	10	15 15	1.27
Kingston	2013	9 9	21	10	30	2.286
Kingston	2013	9	21	10	45	0.508
Kingston	2013	9	21	11	45	0.508
Kingston	2013 2013	9 9 9 9	21 21	12 12	0 15	0.762 0.254
Kingston Kingston	2013	9	21	12	30	1.524
Kingston	2013	9	21	13	15	0.254
Kingston	2013	9	21	13	30	1.016
Kingston	2013	9 9 9	21	14	0	0.254
Kingston	2013	9	21	14	15	0.508
Kingston	2013 2013	9 9 9	21 21	14 14	30	0.762
Kingston Kingston	2013	9	21	14 15	45 0	$1.016 \\ 1.016$
Kingston	2013	9	21	15	15	2.286
Kingston	2013	9 9 9	21	15	30	1.524
Kingston	2013	9	21	15	45	0.762
Kingston	2013	9	21	16	0	1.016
Kingston	2013 2013	9 9 9	21 21	16 16	15 30	$1.016 \\ 1.524$
Kingston Kingston	2013	9	21	16	45	1.016
Kingston	2013	9 9	21	17	0	0.254
Kingston	2013	9	21	17	15	1.016
Kingston	2013	9	21	17	30	0.762
Kingston	2013	9	21	17	45	0.254
Kingston Kingston	2013 2013	9 a	21 21	18 18	0 15	0.762 0.762
Kingston	2013	ğ	21	18	30	0.508
Kingston	2013	9	21	18	45	0.508
Kingston	2013	9	21	19	0	0.508
Kingston	2013	9	21	19	15	0.508
Kingston	2013	9	21 21	19	30	0.508
Kingston Kingston	2013 2013	9	21	20 20	0 30	0.254 0.254
Kingston	2013	9	21	20	45	0.254
Kingston	2013	9	21	21	0	0.254
Kingston	2013	9	21	21	30	0.508
Kingston	2013	9	21	21	45	1.27
Kingston	2013	9	21	22	0	0.254
Kingston Kingston	2013 2013	9 Q	21 21	22 22	15 30	0.762 0.254
Kingston	2013	9	21	22	15	0.254
Kingston	2013	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	22	ō	Ō	0.254
Kingston	2013	9	22	0	30	0.254

,, _	-	-		5		
; Return period ;Station Kingston	Year 2008 2008 2008 2008 2008 2008 2008 200	Month 07 07 07 07 07 07 07 07 07 07 07 07 07	Day 01 01 01 01 01 01 01 01 01 01 01 01 01	Hour 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02 02 02	Min 00 10 20 30 40 50 00 10 20 30 40 50 00 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 00 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 20 20 20 20 20 20 20 20 20 20 20 20	2 years Rain in mm 1.263 1.263 1.263 1.263 1.263 1.263 1.263 1.474 1.474 1.474 1.474 1.474 1.474 1.474 1.474 1.473 1.403 1.653 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.055
Kingston Kingston Kingston	2008 2008 2008	07 07 07	01 01 01	07 07 08	40 50 00	0.211 0.211 0.070
Kingston	2008	07	01	08	50	0.070

; Return period ; Station Year Month Day Hour Min Rain in mm Kingston 2008 07 01 01 00 2.016 Kingston 2008 07 01 01 10 2.016 Kingston 2008 07 01 01 10 2.016 Kingston 2008 07 01 01 30 2.016 Kingston 2008 07 01 01 30 2.016 Kingston 2008 07 01 01 50 2.016 Kingston 2008 07 01 01 02 10 2.352 Kingston 2008 07 01 02 10 2.352 Kingston 2008 07 01 02 10 2.352 Kingston 2008 07 01 02 30 2.352 Kingston 2008 07 01 03 00 2.240 Kingston 2008 07 01 03 10 2.240 Kingston 2008 07 01 03 10 2.240 Kingston 2008 07 01 03 20 2.240 Kingston 2008 07 01 03 20 2.240 Kingston 2008 07 01 03 30 2.240 Kingston 2008 07 01 03 30 2.240 Kingston 2008 07 01 03 30 2.240 Kingston 2008 07 01 03 40 2.240 Kingston 2008 07 01 03 40 2.240 Kingston 2008 07 01 04 10 1.680 Kingston 2008 07 01 05 10 1.568 Kingston 2008 07 01 04 30 1.680 Kingston 2008 07 01 05 10 1.568 Kingston 2008 07 01 05 00 1.568 Kingston 2008 07 01 06 10 0.896 Kingston 2008 07 01 06 00 0.896 Kingston 2008 07 01 06 00 0.896 Kingston 2008 07 01 07 00 0.336 Kingston 2008 07 01 08 40 0.112 Kingston 2008 07 01 08 40 0.112	,, _				. g e co.		
Kingston 2008 07 01 08 40 0.112	;Station Kingston	Year 2008 2008 2008 2008 2008 2008 2008 200	07 07 07 07 07 07 07 07 07 07 07 07 07 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	$\begin{array}{c} 01\\ 01\\ 01\\ 01\\ 02\\ 02\\ 02\\ 02\\ 02\\ 02\\ 02\\ 02\\ 02\\ 02$	$\begin{array}{c} 00\\ 10\\ 20\\ 30\\ 40\\ 50\\ 00\\ 10\\ 20\\ 30\\ 40\\ 50\\ 00\\ 10\\ 20\\ 30\\ 40\\ 50\\ 10\\ 20\\ 30\\ 40\\ 50\\ 10\\ 20\\ 30\\ 40\\ 50\\ 10\\ 20\\ 30\\ 40\\ 50\\ 10\\ 20\\ 30\\ 40\\ 50\\ 10\\ 20\\ 30\\ 50\\ 10\\ 20\\ 30\\ 50\\ 10\\ 20\\ 30\\ 50\\ 10\\ 20\\ 30\\ 50\\ 10\\ 20\\ 30\\ 50\\ 10\\ 20\\ 30\\ 50\\ 10\\ 20\\ 30\\ 50\\ 10\\ 20\\ 30\\ 50\\ 10\\ 20\\ 30\\ 50\\ 10\\ 20\\ 30\\ 50\\ 10\\ 20\\ 30\\ 50\\ 10\\ 20\\ 30\\ 50\\ 10\\ 20\\ 30\\ 50\\ 10\\ 20\\ 30\\ 50\\ 10\\ 20\\ 30\\ 50\\ 10\\ 20\\ 30\\ 10\\ 20\\ 10\\ 10\\ 20\\ 10\\ 20\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$	Rain in mm 2.016 2.016 2.016 2.016 2.016 2.352 2.352 2.352 2.352 2.352 2.352 2.352 2.352 2.352 2.240 2.240 2.240 2.240 2.240 2.240 1.680 1.680 1.680 1.680 1.680 1.680 1.680 1.680 1.568 1.56
Kingston 2008 07 01 08 50 0.112	Kingston Kingston	2008 2008	07 07		08 08		0.112 0.112


,, _		-		5		
; Return period ;Station Kingston	Year 2008 2008 2008 2008 2008 2008 2008 200	Month 07 07 07 07 07 07 07 07 07 07 07 07 07	Day 01 01 01 01 01 01 01 01 01 01 01 01 01	Hour 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02 02 02	Min 00 10 20 30 40 50 20 30 40 50 20 30 40 50 20 30 40 50 20 30 40 50 20 30 40 50 20 30 20 20 30 20 20 30 20 20 30 20 20 20 20 20 20 20 20 20 20 20 20 20	25 years Rain in mm 2.394 2.394 2.394 2.394 2.394 2.394 2.793 2.793 2.793 2.793 2.793 2.793 2.793 2.793 2.793 2.793 2.660 2.695 1.90
Kingston Kingston Kingston	2008 2008 2008	07 07 07	01 01 01	08 08 08	30 40 50	0.133 0.133 0.133


, Kindston, on	/	//E3 12 1	iour aco	ign scon		
; Return period ;Station Kingston	Year 2008	Month 07 07 07 07 07 07 07 07 07 07 07 07 07	Day 01 01 01 01 01 01 01 01 01 01 01 01 01	Hour 01 01 01 01 01 01 02 02 02 02 02 02 02 02 03 03 03 03 03 03 03 03 03 03	Min 00 10 20 30 40 50 00 10 20 30 10 20 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	50 years Rain in mm 2.673 2.673 2.673 2.673 2.673 2.673 2.673 3.119 3.119 3.119 3.119 3.119 3.119 3.119 3.119 3.119 3.119 3.119 2.970 2.079 2.074 2.07
Kingston Kingston Kingston Kingston Kingston Kingston	2008 2008 2008 2008 2008 2008 2008	07 07 07 07 07 07 07	01 01 01 01 01 01	07 07 08 08 08 08 08	40 50 00 10 20 30	0.446 0.446 0.149 0.149 0.149 0.149 0.149
Kingston Kingston	2008 2008	07 07	01 01	08 08	40 50	0.149 0.149

,, -	-	-		5		
; Return period ;Station Kingston	Year 2008	Month 07 07 07 07 07 07 07 07 07 07 07 07 07	Day 01 01 01 01 01 01 01 01 01 01 01 01 01	Hour 01 01 01 01 01 02 02 02 02 02 02 02 03 03 03 03 03 03 03 03 03 03	Min 00 10 20 30 40 50 00 10 20 30 20 20 20 20 20 20 20 20 20 20 20 20 20	100 years Rain in mm 2.952 2.952 2.952 2.952 2.952 2.952 3.444 3.444 3.444 3.444 3.444 3.444 3.444 3.444 3.444 3.444 3.444 3.444 3.444 3.444 3.444 3.444 3.444 3.444 3.444 3.440 2.80 3.280 3.280 3.280 3.280 3.280 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.460 2.296 2.20
Kingston	2008	07 07 07 07 07 07 07	01 01 01 01 01 01 01	07 07 08 08 08 08 08 08	40 50 00 10 20 30 40	0.492
Kingston	2008	07	01	08	50	0.164

APPENDIX C

Dry-Weather Calibration Observations

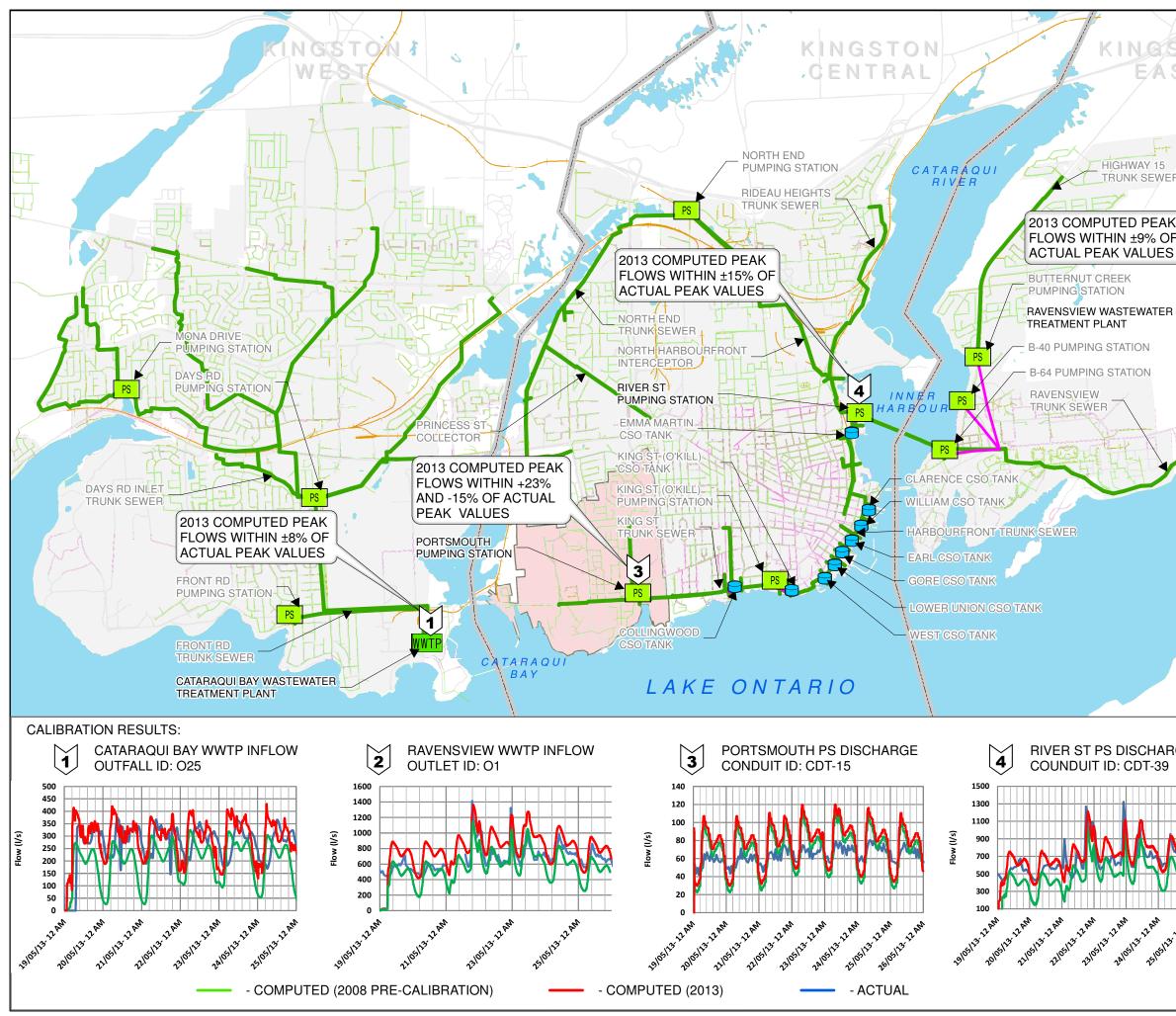
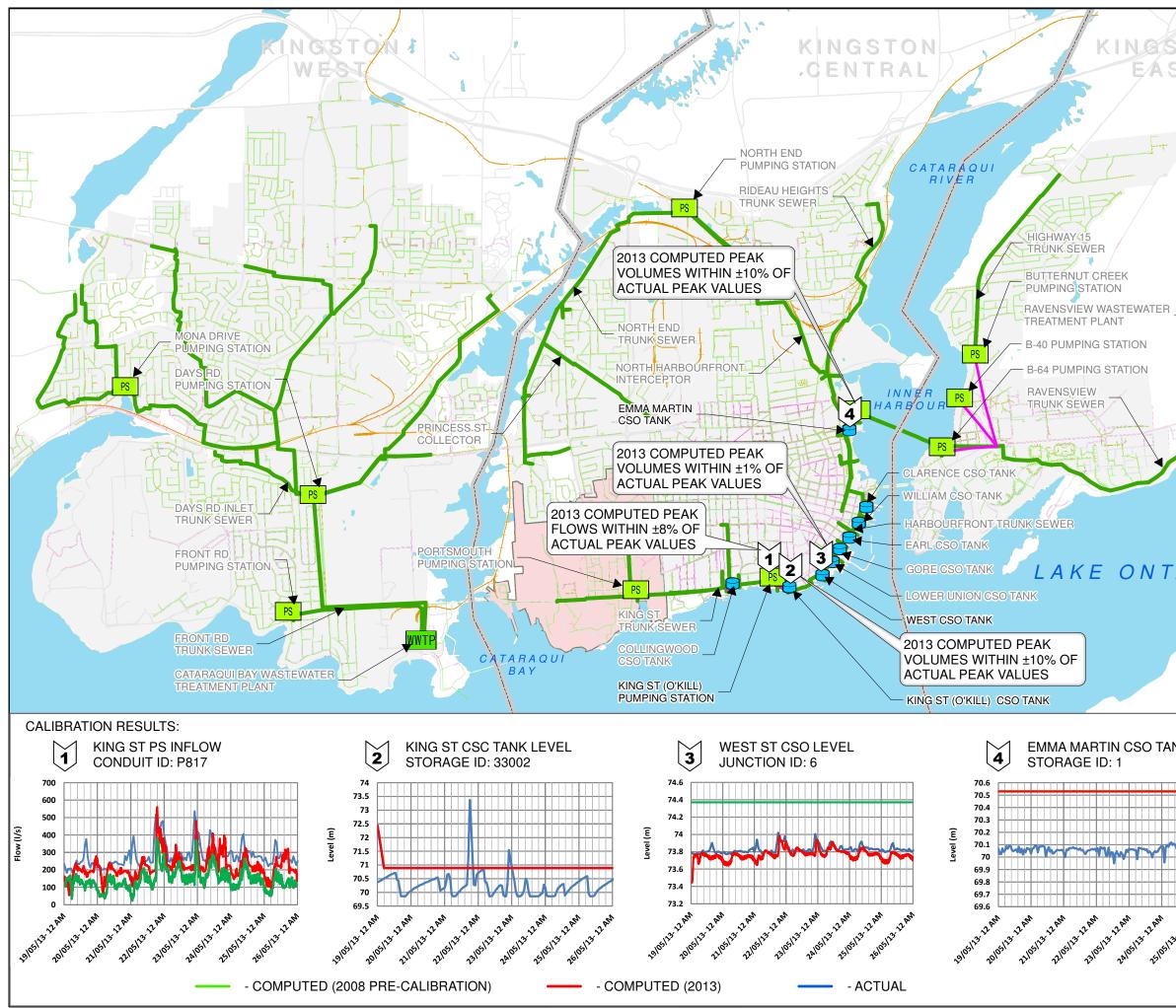
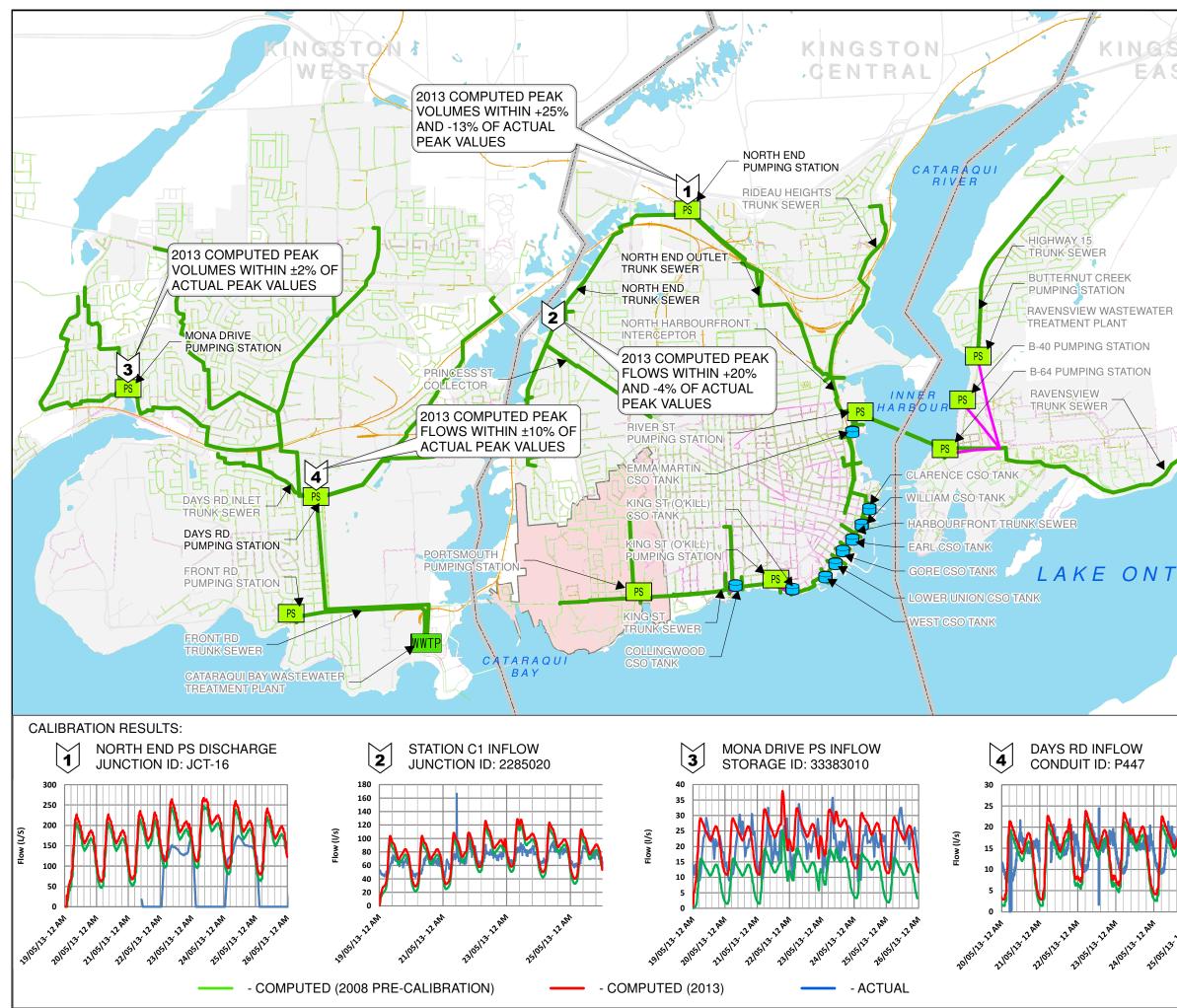

	Table C2: Model Parameter Inputs for Dry-Weater Flows										
	2008 DWF	2013 DWF			2008 DWF	2013 DWF					
Junction	Model	Model		Junction	Model	Model					
Node ID	Parameter	Parameter		Node ID	Parameter	Parameter					
	(Original)	(Update)			(Original)	(Update)					
31068011	2.550	3.110		33738020	0.020	0.020					
31111010	1.530	1.540		33740020	0.080	0.080					
31325010	2.720	2.790		33827020	0.210	0.210					
31327030	1.100	1.130		33828020	0.040	0.040					
31445081	2.790	3.070		33829010	0.030	0.030					
32149161	0.570	0.570		33861020	0.080	0.080					
32173010	0.290	0.290		33863010	0.180	0.190					
32173030	0.420	0.420		33865020	0.070	0.070					
32173051	0.260	0.260		34003020	0.080	0.080					
32173071	0.420	0.420		34008020	0.050	0.050					
33005010	0.810	0.820		34021010	0.140	0.140					
33022031	0.480	0.530		34021040	0.130	0.130					
33022040	0.900	0.910		34022020	0.480	0.480					
33024020	0.680	0.680		34023030	0.120	0.130					
33026030	3.200	3.200		34024040	0.150	0.160					
33026041	0.240	0.240		34026050	0.280	0.280					
33089010	2.760	3.170		34153010	0.170	0.170					
33104010	0.140	0.140		34154040	0.050	0.050					
33104030	0.120	0.120		34156020	0.060	0.060					
33117010	0.190	0.190		34158030	0.060	0.060					
33125010	0.050	0.050		34166020	1.270	2.080					
33135030	1.750	1.750		345010	2.070	2.070					
33204010	0.200	0.200		345020	4.260	4.360					
33206020	0.050	0.050		345111	1.710	1.760					
33212011	0.050	0.050		345121	2.030	2.030					
33240010	0.330	0.340		345171	2.430	2.430					
33242020	0.410	0.410		345181	0.980	1.000					
33243010	2.020	2.020		346251	6.860	6.860					
33275020	0.070	0.070		35511011	14.960	27.350					
33276010	0.090	0.090		356010	5.170	5.170					
33308030	0.050	0.050		356020	0.580	0.580					
33309030	0.090	0.090		356031	4.970	4.970					
33383041	0.160	0.160		356071	1.980	1.980					
33399010	0.580	0.580		33492030	0.060	0.060					
33461010	1.140	1.140		33700010	0.140	0.140					
33462030	0.460	0.460		514090	3.900	5.310					
33463020	0.070	0.070		517010	3.890	4.670					
33464020	0.050	0.050		526010	4.110	4.130					
33471010	1.730	1.730		526021	1.990	2.080					
33472030	0.040	0.040		540010	0.900	0.910					
33492020	0.400	0.420	_	540030	0.030	0.030					

Table	C2: Model P	arameter Inp	u	ts for Dry-\	Neater Flows (Co	ontinued)
	2008 DWF	2013 DWF			2008 DWF	2013 DWF
Junction	Model	Model		Junction	Model	Model
Node ID	Parameter	Parameter		Node ID	Parameter	Parameter
	(Original)	(Update)			(Original)	(Update)
61030	21.170	21.350		3151030	6.970	6.990
65010	2.470	2.500		3208020	0.534	0.630
68010	0.930	1.050		3209020	0.040	0.040
763030	4.260	4.400		3210010	2.347	2.380
764020	1.550	1.580		3214010	0.049	0.049
765010	1.500	1.500		329010	5.960	5.960
765110	0.280	0.470		34050	0.106	0.120
769031	25.120	25.300		37010	0.055	0.055
770011	0.080	0.080		39130	2.676	2.690
771031	0.300	0.300		3942010	3.459	3.459
837010	4.390	4.440		3943110	6.456	6.610
837031	4.270	4.320		40030	0.753	0.770
842040	4.220	5.060		4010	0.423	0.430
842070	1.000	1.310		41020	0.104	0.104
842110	0.560	0.560		42020	0.341	0.341
9164020	0.030	0.030		4602010	1.181	1.190
9559010	1.930	2.990		4803002	0.258	0.258
9954021	2.190	2.200		48040	0.159	0.159
9965010	0.770	0.800		49010	22.773	22.870
1010	0.562	0.562		50010	0.180	0.180
11110010	6.299	6.299		5002110	7.306	7.306
11110021	2.018	2.018		509020	1.551	1.560
11245011	9.878	9.950		509031	0.050	0.050
11282010	4.874	4.874		509091	0.083	0.083
12035020	0.676	0.676		51020	0.020	0.020
13266071	21.105	21.120		52010	0.077	0.077
13266081	2.275	2.275		5259010	7.131	7.170
13266091	1.782	1.800		53010	0.018	0.018
1760020	29.285	29.285		5302030	3.707	3.780
1762010	5.606	5.630		54020	3.328	3.410
1762030	5.962	6.750		5402040	0.003	0.003
2284040	0.790	0.790		54040	0.246	0.260
2284060	0.759	0.780		5404010	0.073	0.073
2284131	0.355	0.370		5404050	0.099	0.099
2284141	1.584	1.584		54050	2.853	3.060
2285010	1.147	1.147		5405020	0.055	0.055
2285030	2.146	2.146		5406010	0.021	0.021
231010	1.528	1.540		6020	0.248	0.248
231030	0.028	0.028		6051031	0.316	0.316
233011	5.520	6.140		6052020	0.186	0.200
3151010	1.062	1.062		6053010	0.120	0.120


Table	C2: Model P	arameter Inp	bu	ts for Dry-\	Neater Flows (Co	ntinued)
	2008 DWF	2013 DWF			2008 DWF	2013 DWF
Junction	Model	Model		Junction	Model	Model
Node ID	Parameter	Parameter		Node ID	Parameter	Parameter
	(Original)	(Update)			(Original)	(Update)
614051	2.743	2.770		8569081	6.384	6.410
6151050	0.605	0.650		8569131	0.226	0.226
6251040	1.435	1.480		8902020	5.698	5.710
630010	0.295	0.295		9101010	0.145	0.145
630020	1.505	1.505		9222010	8.385	8.385
630070	0.068	0.110		9227020	11.481	11.510
631020	0.910	0.930		9227081	6.767	7.230
632010	1.033	1.033		9228041	0.659	0.690
632060	0.178	0.190		9432010	1.976	2.030
633010	1.666	1.666		9502020	1.546	1.590
633060	0.718	1.890		9624010	5.556	6.160
633120	0.308	0.340		9628010	1.263	1.380
6351020	0.804	0.804		9653010	1.373	1.560
636020	1.077	1.600		9654020	0.122	0.140
637060	0.301	0.301		9655010	0.055	0.055
637062	1.313	5.370		9655020	0.118	0.118
6451050	0.785	0.785		9716010	7.196	7.240
6551030	1.234	1.250		9729010	2.595	2.595
6752020	1.301	1.301		9901010	0.423	0.450
6950060	0.434	0.450		9902010	0.152	0.170
7054110	0.263	0.263		9903010	0.110	0.110
7101110	1.822	1.822				
7102110	0.881	0.881				
7104010	1.257	1.300				
7105010	0.056	0.056				
7105020	0.313	0.313				
7109010	0.236	0.350				
7455020	2.700	2.740				
7954110	1.840	1.880				
823020	11.536	11.536				
825030	2.087	2.087				
825080	3.542	3.542				
825090	1.861	1.861				
828040	2.981	3.170				
8554030	0.046	0.046				
8554041	0.805	0.830				
8554081	5.003	5.110				
8565010	0.902	0.910				
8565020	1.297	1.750				
8569041	0.983	0.990				

APPENDIX D


Wet-Weather Calibration Observations

STON		1224 GARDINEF KINGSTON CANADA	NSP S RD, SUITE 201 , ONTARIO, , K7P 0G2 GROUP.COM
R		Utilities Kingston	UTILTIES KINGSTON P.O. BOX 790, KINGSTON, ONTARIO, K7L 4X7
KFS V2 WWTP	PS - F	PUMPING STA CSO TANK EXISTING SA EXISTING CO TRUNK FORC PUMP (MODE CATCHMENT	R TREATMENT PLANT ATION (TRUNK) NITARY SEWER MBINED SEWER EMAIN/SEWER L REPRESENTATON) AREA H PS SERVICE AREA
	Natural Resou Utilties Kingsto Scale: 0 500 1	Ontario Base Map Irces, August 2013 on, July 2013, City ,000 2,0	3. Sewer System,
RGE	Envi	Flow D ronmenta	i umping Station irection al Assessment ston, Ontario
1.2.6M 1.2.2.6M	CALIB Project No.:		ATHER EVENT: UMMARY MAP 1 Date: MARCH, 2014
2610	Drawn By: MF	Checked By: MM	Drawing No.: 4-1

STON		1224 GARDINEF KINGSTON CANADA	NSP S RD, SUITE 201 , ONTARIO, , K7P 0G2 GROUP.COM
		Jtilities Kingston	UTILTIES KINGSTON P.O. BOX 790, KINGSTON, ONTARIO, K7L 4X7
	Legend:		
	WWTP - V	WASTEWATE	R TREATMENT PLANT
	PS - F	PUMPING ST	ATION (TRUNK)
l	- (CSO TANK	
		EXISTING SAI	NITARY SEWER
			MBINED SEWER
		· ·	L REPRESENTATON)
WWTP	- (CATCHMENT	AKEA
	- F	PORTSMOUT	H PS SERVICE AREA
TA R I O	Natural Resou	Ontario Base Map rces, August 2013 on, July 2013, City	3. Sewer System,
	Scale:		N A
	0 500 1 L I 1:50,000	,000 2,0 	000 Metres W E S
	Project:		
	Ports		umping Station
NK LEVEL	┍		irection
	ENVI	ronmenta	al Assessment
	City	y of King	ston, Ontario
	Title: MAY	WET-WE	ATHER EVENT:
			UMMARY MAP 2
13-12-10-11-2-12-12-12-12-12-12-12-12-12-12-12-1	Project No.:		Date:
13 26/05/13	131-18	3048-00	MARCH, 2014
٣	Drawn By:	Checked By:	Drawing No.:
	MF	MM	4-2

STON		1224 GARDINEF KINGSTON CANADA	NSP S RD, SUITE 201 I, ONTARIO, , K7P 0G2 GROUP.COM							
		Jtilities Kingston	UTILTIES KINGSTON P.O. BOX 790, KINGSTON, ONTARIO, K7L 4X7							
	- Legend:									
	WWTP - ۱	WASTEWATE	R TREATMENT PLANT							
	PS - F	PUMPING ST	ATION (TRUNK)							
}	- (CSO TANK								
	_		NITARY SEWER							
	- E	EXISTING CO	MBINED SEWER							
	- TRUNK FORCEMAIN/SEWER									
C C C		,	L REPRESENTATON)							
WWTP	- (CATCHMENT	AREA							
	- F	PORTSMOUT	H PS SERVICE AREA							
TARIO	Data Source: (Dntario Base Map rces, August 2013	ping, Minisitry of							
		on, July 2013, City								
	Scale: 0 495 9	00 10								
	0 495 9 L 1:50,000	990 1,9	180 Metres							
	Project:									
	Ports		umping Station							
	Envi		irection al Assessment							
			11 7996991116111							
n Ma	City	y of Kings	ston, Ontario							
5-12.0M 13-2.70M			ATHER EVENT: UMMARY MAP 3							
12 AM 12 AM	Project No.:		Date:							
26105113°	131-18	3048-00	MARCH, 2014							
v	Drawn By:	Checked By:	Drawing No.:							
	MF	MM	4-3							

APPENDIX E

Growth Projection Calibration and Supplementary Reports

Table E1 - Population Calculation

DESIGNED BY:	Michael Flowers. EIT
CHECKED BY:	Matt Morkem, P.Eng.

Assumptions	
Units per Hectare=	37.5 Units/Ha
Average Persons Per Unit=	2.1
2026 Growth Rate =	26%

City of Kingston - Large Scale Developments City of Kingston - Residential 2% growth/year from 2013

Proposed 2026 Projection

Development	Area (Ha)	Building Type ¹	Total Units	Total Population	Notes		
St. Mary's Hospital	5	N/A 49		102	26% of long term development		
		Residential	341	660	Includes U1, V4, V8 & V11		
Williamsville 'A'	24.25	Retail	267	173	Refer to Appended Williamsville		
			TOTAL	833	Service Study		
		Residential	15	28	Includes V10		
Williamsville ' B'	2.51	Retail	16	11	Refer to Appended Williamsville		
			TOTAL	39	Service Study		
North Block	5.04	Residential	39 82		26% of long term development Refer to Appended North Block		
North Block		Commercial ²	6,500	Service Study			
Davis Tannery	11.08		Refer to A	vice Study			
IO Psych Hospital	50.12		Refer to Appe	nded XCG/FoTenn	Service Study		
Alcan Property	104.95	N/A					26% of long term development. In accordance with City of Kingston Official Plan
Novellis	74.55	N/A	727	1526	26% of long term development. In accordance with City of Kingston Official Plan		

Proposed Full Build-Out Projection

Development	Area (Ha)	Building Type ¹	Total Area/Units	Total Population	Notes			
St. Mary's Hospital	5	N/A	188	394	26% of long term development			
		Residential	1606	3100	Includes U1-U23, V1-V9 & V11			
Williamsville 'A'	24.25	Retail	1361	885	Refer to Appended Willaimsville			
			TOTAL	3985	Service Study			
	2.51	Residential	68	130	Includes U24, U25 & V10			
Williamsville 'B'		Retail	57	37	Refer to Appended Willaimsville Service Study			
			TOTAL	167				
North Block	5.04	Residential	150	315	Refer to Appended North Block			
NOTH DIOCK		Commercial ²	25,000 sq. ft.		Service Study			
Davis Tannery	11.08		Refer to A	ppended WSP Ser	vice Study			
IO Psych Hospital	50.12		Refer to Appe	nded XCG/FoTenn	Service Study			
Alcan Property	104.95	N/A	In accordance with					
Novellis	74.55	N/A	2796	5871	In accordance with City of Kingston Official Plan			

Notes:

Building Type provided by City of Kingston
 Persons per unit from City of Kingston Subdivision Design Guidelines

3) Flow per MOE Design Guidelines (5 L/d/m²)
4) Total persons calculated by multipling Total Number of Units and Persons Per Unit

Table E2 - Sanitary Sewer Calculation Sheet - Flow Projections

DEVEL	OPMENT AF	REA DESCR					FLOW G	ENERATIO	ON ²	
			Contributing A	rea			q		Peak Flow (I/s)	Additional Flow (I/s) ⁴
LOCATION	FROM	то	No.	На	Р	P(1000)	l/cap/d)	М		
St. Mary's Hospital - 2026					102	0.10	350	4.00	1.66	
St. Mary's Hospital - Build-Out	Site	39130	COKL05	5.00	394	0.39	350	4.00	6.38	
Williamsville 'A' - 2026 ¹			CHRB02,		833	0.833	350	3.85	12.99	
Williamsville 'A' - Build-Out ¹	Site	9222010	COM_CHRB02	24.25	3985	3.985	350	3.33	53.83	
Williamsville 'B' - 2026 ¹			CHBT03,		39	0.039	350	4.00	0.63	
Williamsville 'B' - Build-Out ¹	Site	7101110	COM_CHBT03	2.51	167	0.167	350	4.00	2.71	
			CHRB07, CHRB08,							
North Block - 2026 ¹	_		CHRB09, CHRB10, CHRB11,		82	0.0819	350	4.00	1.33	0.04
North Block - Build-Out ¹	Site	9902010	COM_CHRB11	5.04	315	0.315	350	4.00	5.10	0.13
Davis Tannery - 2026	-		CNEO01, CHRB01,						7.20	
Davis Tannery - Build-Out	Site	7109010	COM_CHRB01	11.88	WSP Service Study			27.70		
IO Psych Hospital - 2026					×		Service Stu	dy	12.22	
IO Psych Hospital - Build-Out	Site	49010	CKNG03	50.12	XCG/F0Tenin		enn Service Study		42.00	
Alcan Property - 2026	Site				2149	2.15	350	3.56	31.00	
Alcan Property - Build-Out	One	1760020	CNET04	104.95	8265	8.26	350	3.04	101.66	
Novellis - 2026					1526	1.53	350	3.67	22.72	
Novellis - Build-Out	Site	823020	CPRS06	74.55	5871	5.87	350	3.18	75.62	
	DESIGN PA				PROJEC	CT:				
Manning's n =	0.0130		City of Kingston Guide		Deuten			74-1 !		
Average Daily Flow (q)=	350	l/cap/d	City of Kingston Guide	lines					Flow Red	irection
Notes:		/	(Duessiele et has tabilitie et l	(Environmental Assessment LOCATION:					
1) Refer to Table A1 for population					LUCAII	ON:				
 Flow caclulation for developme growth projection. 	nt represents	additional ir	itensificiation from prev	IOUS						
 I & I was not included as calcu within the InfoSWMM model 	lated flows ar	e for dry wea	ather only. 1 & I is acco	unted for	City of Kingst	Kingsto on. ON	on - Urba	in Area		
4) Commercial flow rates from M	OE 2008 Sew	ver Desgin G	iuidelines		Project N				Date:	
					131-18	048-00			10-A	pr-14

DEVELOPMENT AREA DESCRIPTION				NG DRY - ER FLOW ¹	ADJUSTED PEAK FLOW ³			DRY-WEATHER FLOW MODEL PARAMETERS ²						
LOCATION			Contributing Area	2026	Build-Out	Peak Flow 2026	Adjusted 2026	Peak Flow Build-Out	Adjusted Build-Out	Diurnal Peaking Factor ⁴	Existing 2026	Adjusted 2026	Existing Build-Out	Adjusted Build-Out
	FROM	то	No.	(l/s)	(l/s)	(l/s)	(l/s)	(l/s)	(l/s)		(l/s)	(l/s)	(l/s)	(I/s) /B · D) / E
St. Mary's Hospital	Site	39130	COKL05	A 4.81	B 4.81	C 1.66	A+C 6.47	D 6.38	B+D 11.19	E 1.78	2.71	(A+C) / E 3.64	2.71	(B+D) / E 6.30
Williamsville 'A'	Site	9222010	CHRB02, COM_CHRB02	14.88	14.88	12.99	27.87	53.83	68.72	1.78	8.39	15.70	8.39	38.71
Williamsville 'B'	Site	7101110	CHBT03, COM CHBT03	2.48	2.48	0.63	3.12	2.71	5.19	1.36	1.82	2.29	1.82	3.81
North Block	Site	9902010	CHRB07, CHRB08, CHRB09, CHRB10, CHRB11, COM_CHRB11	0.27	0.36	1.36	1.64	5.23	5.60	1.36	0.20	1.20	0.27	4.11
Davis Tannery	Site	7109010	CNEO01, CHRB01, COM CHRB01	1.13	4.21	7.20	8.33	27.70	31.91	1.78	0.64	4.69	2.37	17.98
IO Psych Hospital	Site	49010	CKNG03	41.07	42	12.22	53.29	42.00	83.75	1.78	23.14	30.02	23.52	47.18
Alcan Property	Site	1760020	CNET04	51.98	68	31.00	82.98	101.66	169.59	1.78	29.29	46.75	38.27	95.54
Novellis	Site	823020	CPRS06	20.48	23	22.72 By:	43.19	75.62	98.37 PROJECT:	1.78	11.54	24.33	12.82	55.42
es:						Michael F	Flowers, E	IT	Portsmor Environn	-	•		Redirectio	on
 & 2) Existing dry-weather flow and dry-weather flow model paramaters taken from Utilities Kingston foSWMM Model. (Provided by Utilites Kingston) Refer to Table A2 for adjusted Peak Flow data information/calculations Diurnal peaking factor taken from Utilities Kingston InfoSWMM Model 					Checked By: LOCATION:									
					Matt Morkem, P.Eng			City of Ki Kingston	, ÔN	Urban Ar	rea			
						Dwg. Refere	nce:		Project Numbe	er:				Date:
							1-18048-00_DWG5_1.mxd 131-18048-00					10-Apr-1		

APPENDIX F

Design Storm and CSO Analysis Results

TABLE F-1: Design Storm Pumping Station and WWTP Capacity Analysis for Kingston Central – Portsmouth Service Area Routed East vs. West

Station/Outfall ¹	Model ID(s)	Reported Firm*/Peak	Route Direction			2013	Peak In	flow (L/s))				202	6 Peak In	flow (L/s)	I				Build-ou	t Peak Inf	low (L/s)		
		Instantaneous Capacity (L/s)		DW	1:2 yr	1:5 yr	1:10 yr	1:25 yr	1:50 yr	1:100 yr	DW	1:2 yr	1:5 yr	1:10 yr	1:25 yr	1:50 yr	1:100 yr	DW	1:2 yr	1:5 yr	1:10 yr	1:25 yr	1:50 yr	1:100 yr
Portsmouth	Storage ID:	285***	EAST 1	128	190	231	261	302	332	364	132	193	235	265	305	336	365	152	213	255	285	325	356	387
Pumping Station	48010		EAST 2	128	190	231	261	302	332	364	145	206	247	277	317	348	380	194	255	297	327	367	395	424
			WEST	128	190	231	261	302	332	364	145	206	247	277	317	348	380	194	255	297	327	367	395	424
North End	Storage ID:	1,050*	EAST 1	240	401	496	560	692	774	854	249	412	506	570	704	786	865	284	447	535	621	775	822	902
Pumping Station	1760010		EAST 2	240	401	496	560	692	774	854	300	460	546	639	754	831	902	448	584	708	788	876	942	1,009
			WEST	240	401	496	560	692	774	854	300	460	546	639	754	831	902	448	584	708	788	876	942	1.009
River St Pumping	Storage ID:	1,425*	EAST 1	1,198	1,967	1,997	2,007	2,097	2,196	2,402	1,221	1,954	1,983	1,997	2,007	2,024	2,043	1,311	1,355	1,973	1,979	2,001	1,985	2,003
Station	7114003		EAST 2	1,198	1,967	1,997	2,007	2,097	2,196	2,402	1,302	1,966	1,992	1,996	2,060	2,097	2,049	2,021	1,980	1,995	2,003	1,991	2,022	2,074
			WEST	1,123	1,968	1,996	2,025	2,040	2,058	2,193	1,211	1,960	1,989	1,989	2,019	2,000	2,001	1,450	1,377	1,982	1,980	1,1989	2,010	2,056
King St Pumping	Storage ID:	600*	EAST 1	729	881	1,147	1,233	1,268	1,289	1,346	740	775	923	1,038	1,090	1,185	1,274	768	770	786	963	1,069	1,097	1,067
Station	34010		EAST 2	735	950	1,147	1,233	1,268	1,295	1,346	740	741	1,038	1,049	1,124	1,289	1,300	765	770	805	932	953	1,054	1,110
			WEST	735	930	979	1,170	1,227	1,238	1,270	740	725	759	868	996	990	1,045	550	572	678	702	711	762	797
Cataraqui Bay	Outfall ID:	799**	EAST 1	439	649	815	904	1,033	1,140	1,277	512	760	894	1,014	1,118	1,250	1,377	709	954	1,099	1,196	1,335	1,432	1,571
WWTP	025		EAST 2	439	649	815	904	1,033	1,140	1,277	512	760	894	1,014	1,118	1,250	1,377	709	954	1,099	1,196	1,335	1,432	1,571
			WEST	545	953	1,012	1,143	1,315	1,455	1,624	666	953	1,095	1,265	1,424	1,581	1,744	948	1,164	1,375	1,495	1,672	1,808	1,944
Ravensview	Outfall ID:	2,153**	EAST 1	1,567	2,342	2,403	2,459	2,528	2,599	2,619	1,525	2,300	2,405	2,444	2,541	2,557	2,569	1,603	1,694	2,348	2,464	2,544	2,557	2,568
WWTP	01		EAST 2	1,567	2,342	2,403	2,459	2,528	2,599	2,619	1,549	2,313	2,405	2,444	2,541	2,557	2,569	2,142	2,296	2,423	2,489	2,544	2,557	2,569
			WEST	1,376	2,342	2,403	2,459	2,528	2,599	2,619	1,481	2,276	2,405	2,444	2,541	2,557	2, 569	1,664	1,692	2,362	2,456	2,541	2,555	2,569

Flow exceeds firm/peak Flow under firm/peak instantaneous capacity instantaneous capacity

Notes:

- EAST 1: Represents 2013 existing conditions with current upgrades and no development intensification. -
- EAST 2: Represents 2013 existing conditions with currents upgrades and development intensification proposed for 2026 and build-out growth scenarios. -
- WEST: Represents current upgrades and the sanitary flow from the Portsmouth PS service area redirected West towards Cataraqui Bay with development intensification proposed for 2026 and build-out growth scenarios. -
- * Values shown are firm capacities based on the Kingston Sewer Master Plan. -
- ** Values shown are peak process instantaneous flows based on the Kingston Sewer Master Plan -
- *** Value from Ministry of Environment Certificate of Approval -

Sewer	Conduit ID(s)	Route Direction					flow (L/s urchargii						2026 Peak In Funk Sewer S		į						Inflow Surcharg		
			DW	1:2yr	1:5 yr	1:10 vr	1:25 vr	1:50 vr	1:100 vr	DW	1:2 yr	1:5 vr	1:10 vr	1:25 yr	1:50 vr	1:100 vr	DW	1:2 vr	1:5 vr	1:10 vr	1:25 vr	1:50 yr	1:100 vr
North End	P188-P208	EAST 1			y'	yı	y i	yı	y i		ут	y i	yı	y i	yı	yı		y i	yı	yı	y'	y i	y i
Outfall		EAST 2																					18%
Sewer		WEST																					18%
North End	P93-P145	EAST 1							5%							2%							2%
Trunk Sewer		EAST 2							5%							5%					2%	5%	10%
		WEST							5%							5%					2%	5%	10%
Princess St	P69-P91	EAST 1					13%	26%	65%				9%	17%	26%	43%				9%	17%	30%	52%
Collector	105151	EAST 2					13%	26%	65%			9%	17%	39%	57%	83%	13%	39%	65%	65%	74%	78%	83%
		WEST					13%	26%	65%			9%	17%	39%	57%	83%	13%	39%	65%	65%	74%	78%	83%
Rideau	P157-P186	EAST 1				3%	23%	29%	32%					13%	24%	26%							
Heights		EAST 2				3%	23%	29%	32%					19%	24%	29%							16%
		WEST				3%	17%	23%	32%					10%	24%	29%							
North	P211-P215	EAST 1		29%	29%	100%	100%	100%	100%		29%	29%	29%	100%	100%	100%		14%	29%	29%	29%	29%	71%
Harbourfront		EAST 2		29%	29%	100%	100%	100%	100%		29%	29%	43%	100%	100%	100%	14%	29%	29%	29%	29%	71%	100%
Interceptor		WEST		14%	29%	86%	100%	100%	100%		14%	29%	29%	100%	100%	100%		14%	29%	29%	29%	29%	29%
King St Trunk	P257-P351	EAST 1		10%	24%	38%	48%	57%	62%					19%	19%	43%							5%
J. J		EAST 2		10%	24%	38%	48%	57%	62%					33%	33%	48%							5%
		WEST					33%	38%	62%														
Harbourfront	P241-P343	EAST 1		100%	100%	100%	100%	100%	100%		21%	96%	100%	100%	100%	100%		19%	21%	25%	93%	93%	93%
Trunk		EAST 2		100%	100%	100%	100%	100%	100%		21%	96%	100%	100%	100%	100%	21%	21%	21%	79%	93%	93%	100%
		WEST		96%	100%	100%	100%	100%	100%		21%	93%	100%	100%	100%	100%		19%	21%	21%	21%	25%	50%
Ravensview	P6 – P156	EAST 1					38%	46%	52%					33%	38%	48%				9%	38%	43%	52%
Trunk Sewer		EAST 2					38%	46%	52%					38%	43%	52%				38%	43%	52%	52%
		WEST					29%	43%	52%					33%	43%	52%				9%	38%	43%	52%

TABLE F-2: Design Storm Trunk Sewer	r Capacity Analysis Results– Portsmouth Service Area Routed East vs. West
-------------------------------------	---

No pipe surcharging	Pipe surcharging greater	Pipe surcharging within
	than 0.3m above pipe and	2m of ground elevation*
	2m below ground	
	elevation.*	

Notes:

- EAST 1: Represents 2013 existing conditions with current upgrades and no development intensification. -
- EAST 2: Represents 2013 existing conditions with currents upgrades and development intensification proposed for 2026 and build-out growth scenarios.
- WEST: Represents current upgrades and Portsmouth PS service area flow redirected West towards Cataraqui Bay WWTP with development intensification proposed for 2026 and build-out growth scenarios. -
- *Values indicate percentage of pipes surcharged

Portsmouth Pumping Station Flow Direction Hydraulic Modelling Memorandum

APPENDIX G

Cost Estimates

WSP Canada Inc

Kingston, ON, K7P 0G2 Telephone: 613-634-7373 Fax: 613-634-3523 1224 Gardiners Road, Suite 201,

Summary of Cost

Redirect West	
1.0 Portsmouth Pumping Station Upgrades	\$1,875,000
2.0 Portsmouth Forcemain_West	\$7,292,500
Estimated Total Redirection Cost	\$9,167,500

Require	Required Upgrades to Continue East	
1.0	1.0 River St PS Upgrades	\$3,535,000
2.0	2.0 North Harbourfront Interceptor Trunk Sewer Upgrades	\$1,025,050
3.0	3.0 King Street Trunk Sewer Upgrades	\$900,050
4.0	4.0 Harbourfront Trunk Sewer Upgrades	\$6,420,000
5.0	5.0 Ravensview Trunk Sewer Upgrades	\$2,400,000
6.0	6.0 Harbourfront CSO Tank Upgrades	\$4,040,000
7.0	7.0 Collingwood CSO Tank Upgrades	\$410,000
8.0	8.0 Belle Park Local 1200 Overflow CSO Tank Upgrades	\$590,000
0.6	9.0 Barrack Street CSO Tank Upgrades	\$410,000
10.0	10.0 Queen Street CSO Tank Upgrades	\$410,000
11.0	11.0 Belle Park Trunk Overflow CSO Tank Upgrades	\$295,000
12.0	12.0 Lower Union St CSO Tank Upgrades	\$205,000
Estima	Estimated Total Upgrade Cost	\$20,640,100

WSP Canada Inc 1224 Gardiners Road, Suite 201, Kingston, ON, K7P 0G2 Telephone: 613-634-7373 Fax: 613-634-3523

Portsmouth Pumping Station Upgrades

ltem	Decemination	I lait Data
No.	nescription	
-	Dewatering and Demolition/Removals	\$75,000
N	Wet well upgrades	\$135,000
ო	Pump System including Controls (VFD's etc)	\$500,000
4	Building Upgrades	\$100,000
വ	Communitor	\$100,000
9	Process Piping	\$70,000
7	Electrical	\$100,000
ω	Site Works Piping	\$90,000
6	Pumping Station By-Pass	\$35,000
10	Restorations	\$30,000
11	Testing & Commisioning	\$10,000
	Sub-Total	\$1,245,000
	General Contractor O/H & Profit (10%)	\$130,000
	Contigency (25%)	\$310,000
	Engineering (15%)	\$190,000
	Estimated Total Project Cost	\$1,875,000

WSP Canada Inc 1224 Gardiners Road, Suite 201, Kingston, ON, K7P 0G2 Telephone: 613-634-7373 Fax: 613-634-3523

Front Road Watermain and Portsmouth Forcemain Project

Protect No: 131-18048 Date Revised: April-22-14 Class "D" Estimate

				Tota	Total Engineer's Estimate
Item No.	Description	Unit Rate	Unit	Quantity	Amount
÷	Removal of Existing Concrete Curb	\$40.00	ΓM	3000	\$120,000
2	Removal of Existing Asphalt and Concrete	\$6.00	SM	18000	\$108,000
3	450mm Forcemain by Trenching	\$350.00	ΓM	3000	\$1,050,000
4	450mm Forcemain by HDD	\$2,000.00	ΓM	350	\$700,000
5	450mm Valve on Forcemain	\$7,500.00	EA	10	\$75,000
9	ARV (50mm) & Chamber for Forcemain	\$25,000.00	EA	3	\$75,000
2	Rock Removal	\$100.00	CM	3000	\$300,000
8	Common Excavation	\$60.00	CM	8000	\$480,000
6	Granular "B"	\$18.00	Т	20000	\$360,000
10	Granular "A"	\$20.00	Т	10000	\$200,000
11	HotMix Asphalt - HL8	\$140.00	Т	4500	\$630,000
12	HotMix Asphalt - HL3	\$150.00	Т	2200	\$330,000
13	Concrete Curb & Gutter - All Types	\$85.00	LM	2700	\$229,500
14	Topsoil & Sod	\$10.00	SM	15000	\$150,000
15	Sediment Control & Environmental Protection	\$100,000.00	LS	1	\$100,000
16	Dewatering	\$75,000.00	LS	1	\$75,000
17	Traffic Control	\$150,000.00	LS	1	\$150,000
18	Lump Sum for Other Requirements	3%	LS	1	\$160,000.00
	SUBTOTAL:				\$5,292,500
	Contigency			25%	\$ 1,330,000.00
	Engineering			10%	\$ 670,000.00
	Estimated Total Project Cost				\$7,292,500

Note: Cost for transient protection are estimated and not based on analysis

WSP Canada Inc 1224 Gardiners Road, Suite 201, Kingston, ON, K7P 0G2 Telephone: 613-634-7373 Fax: 613-634-3523

River Street Pumping Station Upgrades

ltem No.	Description	Unit Rate
-	Dewatering and Demolition/Removals	\$100,000
2	Wet well upgrades	\$350,000
ო	Pump System including Controls (VFD's etc)	\$300,000
4	Building Upgrades	\$750,000
വ	Process Piping	\$400,000
9	Electrical	\$250,000
2	Restorations	\$100,000
8	Testing & Commisioning	\$25,000
	Sub-Total	\$2,275,000
	General Contractor O/H & Profit (15%)	\$350,000
	Contigency (30%)	\$680,000
	Engineering (15%)	\$230,000
	Estimated Total Project Cost	\$3,535,000

WSP Canada Inc 1224 Gardiners Road, Suite 201, Kingston, ON, K7P 0G2 Telephone: 613-634-7373 Fax: 613-634-3523

North Harbourfront Interceptor Upgrades

Protect No: 131-18048 Date Revised: April-22-14 Class "D" Estimate

				Tota	Total Engineer's Estimate
Item No.	Description	Unit Rate	Unit	Quantity	Amount
1	Removal of Existing Asphalt and Concrete	\$6.00	SM	1000	\$6,000
2	≤1500mm Sanitary Sewer (Currently 1200mm)	\$1,100.00	ΓW	300	\$330,000
£	Precast Manholes	\$35,000.00	EA	4	\$140,000
7	Common Excavation	\$10.00	CM	1250	\$12,500
5	Granular "B"	\$18.00	Т	850	\$15,300
9	Granular "A"	\$20.00	Т	425	\$8,500
2	HotMix Asphalt - HL8	\$140.00	T	150	\$21,000
8	HotMix Asphalt - HL3	\$150.00	T	75	\$11,250
6	Concrete Curb & Gutter - All Types	\$85.00	ΓM	300	\$25,500
10	Topsoil & Sod	\$10.00	SM	5000	\$50,000
11	Sediment Control & Environmental Protection	\$25,000.00	LS	1	\$25,000
12	Traffic Control	\$10,000.00	LS	1	\$10,000
13	Lump Sum for Other Requirements	%E	LS	1	\$20,000.00
	SUBTOTAL:				\$675,050
	Contigency			30%	\$ 210,000.00
	Engineering			15%	\$ 140,000.00
	Estimated of Total Project Cost				\$1,025,050

WSP Canada Inc 1224 Gardiners Road, Suite 201, Kingston, ON, K7P 0G2 Telephone: 613-634-7373

Fax: 613-634-3523

King St Trunk Sewer Upgrades

Protect No: 131-18048 Date Revised: April-22-14 Class "D" Estimate

				Tota	Total Engineer's Estimate
Item No.	Description	Unit Rate	Unit	Quantity	Amount
1	Removal of Existing Asphalt and Concrete	\$6.00	SM	1000	\$6,000
2	≤1050mm Sanitary Sewer	\$1,000.00	ΓW	225	\$225,000
З	Precast Manholes	\$25,000.00	EA	4	\$100,000
4	Common Excavation	\$10.00	CM	1250	\$12,500
5	Granular "B"	\$18.00	Т	850	\$15,300
9	Granular "A"	\$20.00	Т	425	\$8,500
7	HotMix Asphalt - HL8	\$140.00	Т	150	\$21,000
8	HotMix Asphalt - HL3	\$150.00	Т	75	\$11,250
6	Concrete Curb & Gutter - All Types	\$85.00	ΓM	300	\$25,500
10	Topsoil & Sod	\$10.00	SM	5000	\$50,000
11	Sediment Control & Environmental Protection	\$50,000.00	ΓS	1	\$50,000
12	Traffic Control	\$75,000.00	ΓS	1	\$75,000
13	Lump Sum for Other Requirements	%E	ΓS	1	\$20,000.00
	SUBTOTAL:				\$620,050
	Contigency			30%	\$ 190,000.00
	Engineering			10%	\$ 90,000.00
	Estimated of Total Project Cost				\$900,050

WSP Canada Inc 1224 Gardiners Road, Suite 201, Kingston, ON, K7P 0G2 Telephone: 613-634-7373 Fax: 613-634-3523

Harbourfront Trunk Sewer Upgrades

Protect No: 131-18048 Date Revised: April-22-14 Class "D" Estimate

				Total	Total Engineer's Estimate
Item No.	Description	Unit Rate	Unit	Quantity	Amount
1	Removal of Existing Asphalt and Concrete	\$6.00	SM	6000	\$36,000
2	≤1500mm Sanitary Sewer (Currently 1200mm)	\$1,500.00	ΓW	1600	\$2,400,000
£	Precast Manholes	\$30,000.00	EA	15	\$450,000
7	Common Excavation	\$10.00	CM	5000	\$50,000
5	Granular "B"	\$18.00	Т	6000	\$108,000
9	Granular "A"	\$20.00	Т	3000	\$60,000
2	HotMix Asphalt - HL8	\$140.00	Г	2000	\$280,000
8	HotMix Asphalt - HL3	\$150.00	Г	1000	\$150,000
6	Concrete Curb & Gutter - All Types	\$85.00	ΓM	1600	\$136,000
10	Topsoil & Sod	\$10.00	SM	5000	\$50,000
11	Sediment Control & Environmental Protection	\$100,000.00	ΓS	1	\$100,000
12	Traffic Control	\$300,000.00	ΓS	1	\$300,000
13	Lump Sum for Other Requirements	4%	ΓS	1	\$170,000.00
	SUBTOTAL:				\$4,290,000
	Contigency			30%	\$ 1,290,000.00
	Engineering			15%	\$ 840,000.00
	Estimated of Total Project Cost				\$6,420,000

WSP Canada Inc 1224 Gardiners Road, Suite 201, Kingston, ON, K7P 0G2 Telephone: 613-634-7373

Fax: 613-634-3523

Ravensview Trunk Upgrades

Protect No: 131-18048 Date Revised: April-22-14 Class "D" Estimate

				Tota	Total Engineer's Estimate
Item No.	Description	Unit Rate	Unit	Quantity	Amount
1	Removal of Existing Asphalt and Concrete	\$6.00	SM	2000	\$12,000
2	≤1650mm Sanitary Sewer (Currently 1350mm)	\$1,500.00	ΓW	200	\$1,050,000
с	Precast Manholes	\$40,000.00	EA	۷	\$280,000
4	Common Excavation	\$10.00	CM	1500	\$15,000
5	Granular "B"	\$18.00	Т	1500	\$27,000
9	Granular "A"	\$20.00	Т	750	\$15,000
7	HotMix Asphalt - HL8	\$140.00	Т	150	\$21,000
8	HotMix Asphalt - HL3	\$150.00	L	100	\$15,000
6	Concrete Curb & Gutter - All Types	\$85.00	ΓM	0	\$0
10	Topsoil & Sod	\$10.00	SM	3000	\$30,000
11	Sediment Control & Environmental Protection	\$50,000.00	ΓS	1	\$50,000
12	Traffic Control	\$15,000.00	LS	1	\$15,000
13	Lump Sum for Other Requirements	4%	LS	1	\$70,000.00
	SUBTOTAL:				\$1,600,000
	Contigency			30%	\$ 480,000.00
	Engineering			15%	\$ 320,000.00
	Estimated of Total Project Cost				\$2,400,000

WSP Canada Inc 1224 Gardiners Road, Suite 201, Kingston, ON, K7P 0G2 Telephone: 613-634-7373 Fax: 613-634-3523

Harbourfront CSO at West St.

۰,	Dewatering and Demolition/Removals	\$100,000
N	Tank upgrades (32x32x4m)	\$2,500,000
ო	Pumping Station By-Pass	\$50,000
4	Restorations	\$15,000
5	Testing & Commisioning	\$25,000
	Sub-Total	\$2,690,000
	General Contractor O/H & Profit (10%)	\$270,000
	Contigency (30%)	\$810,000
	Engineering (15%)	\$270,000
	Estimated Total Project Cost	\$4,040,000

WSP Canada Inc 1224 Gardiners Road, Suite 201,

Collingwood CSO

Kingston, ON, K7P 0G2 Telephone: 613-634-7373 Fax: 613-634-3523

ltem No.	Description	Unit Rate
-	Dewatering and Demolition/Removals	\$ 15,000.00
2	Tank upgrades	\$ 150,000.00
ო	Pumping Station By-Pass	\$ 50,000.00
4	Restorations	\$ 50,000.00
5	Testing & Commisioning	\$ 5,000.00
	Sub-Total	\$270,000
	General Contractor O/H & Profit (10%)	\$30,000
	Contigency (30%)	\$80,000
	Engineering (15%)	\$30,000
	Estimated Total Project Cost	\$410,000

WSP Canada Inc 1224 Gardiners Road, Suite 201, Kingston, ON, K7P 0G2 Telephone: 613-634-7373 Fax: 613-634-3523

Belle Park Local 1200 Overflow CSO

ltem No.	Description	Unit Rate
-	Dewatering and Demolition/Removals	\$ 40,000.00
N	Tank upgrades	\$ 225,000.00
ო	Pumping Station By-Pass	\$ 60,000.00
4	Restorations	\$ 60,000.00
5	Testing & Commisioning	\$ 5,000.00
	Sub-Total	\$390,000
	General Contractor O/H & Profit (10%)	\$40,000
	Contigency (30%)	\$120,000
	Engineering (15%)	\$40,000
	Estimated Total Project Cost	\$590,000

WSP Canada Inc 1224 Gardiners Road, Suite 201,

Barrack Street CSO

Kingston, ON, K7P 0G2 Telephone: 613-634-7373 Fax: 613-634-3523

ltem No.	Description	Unit Rate
-	Dewatering and Demolition/Removals	\$ 15,000.00
2	Tank upgrades	\$ 150,000.00
ო	Pumping Station By-Pass	\$ 50,000.00
4	Restorations	\$ 50,000.00
5	Testing & Commisioning	\$ 5,000.00
	Sub-Total	\$270,000
	General Contractor O/H & Profit (10%)	\$30,000
	Contigency (30%)	\$80,000
	Engineering (15%)	\$30,000
	Estimated Total Project Cost	\$410,000

WSP Canada Inc 1224 Gardiners Road, Suite 201, Kingston, ON, K7P 0G2 Telephone: 613-634-7373 Fax: 613-634-3523

Queen Street CSO

ltem No.	Description	Unit Rate
-	Dewatering and Demolition/Removals	\$ 15,000.00
2	Tank upgrades	\$ 150,000.00
ო	Pumping Station By-Pass	\$ 50,000.00
4	Restorations	\$ 50,000.00
5	Testing & Commisioning	\$ 5,000.00
	Sub-Total	\$270,000
	General Contractor O/H & Profit (10%)	\$30,000
	Contigency (30%)	\$80,000
	Engineering (15%)	\$30,000
	Estimated Total Project Cost	\$410,000

WSP Canada Inc 1224 Gardiners Road, Suite 201, Kingeton ON K7D 002

Belle Park Trunk Overflow

Kingston, ON, K7P 0G2 Telephone: 613-634-7373 Fax: 613-634-3523

ltem No.	Description	Unit Rate
-	Dewatering and Demolition/Removals	\$ 10,000.00
2	Tank upgrades	\$ 100,000.00
ო	Pumping Station By-Pass	\$ 40,000.00
4	Restorations	\$ 40,000.00
5	Testing & Commisioning	\$ 5,000.00
	Sub-Total	\$195,000
	General Contractor O/H & Profit (10%)	\$20,000
	Contigency (30%)	\$60,000
	Engineering (15%)	\$20,000
	Estimated Total Project Cost	\$295,000

WSP Canada Inc 1224 Gardiners Road, Suite 201, Kingston, ON, K7P 0G2 Telephone: 613-634-7373 Fax: 613-634-3523

Lower Union St CSO

ltem No.	Description	Unit Rate
۰	Dewatering and Demolition/Removals	\$ 5,000.00
N	Tank upgrades	\$ 75,000.00
ო	Pumping Station By-Pass	\$ 20,000.00
4	Restorations	\$ 20,000.00
5	Testing & Commisioning	\$ 5,000.00
	Sub-Total	\$125,000
	General Contractor O/H & Profit (10%)	\$20,000
	Contigency (30%)	\$40,000
	Engineering (15%)	\$20,000
	Estimated Total Project Cost	\$205,000